TRIGONOMETRICAL
SERIES

A\
O
N
N
D
R W
-\
S\ 7 .
www dbrawlibrary .org.in

N

ANTONI ZYGMUND

j;,,.‘ . .A"'_" {in E: ”Sf?‘ » ‘
/2 o

T,

‘ym.\’_\ .

DOVER PUBLICATIONS



O

jon, first published in 1955, is 1@‘%

red republication of the eic n
ial

Thie new Dover edit

unabridged and unalte

puliged il G Jlotg AODSReC thwu%*@
thots

arrangement with the & 0

Macnufacmted in the U'ﬁ'\é\@
O

X ¢
Y

N\
\2&\)
\
s\:\Q
X
z\ g
0/2}" .1' r%
/%. SR ki



TABLE OF CONTENTS.
AN

\ rages

N
@

CHAPTER I. Trigonometrical series and \Em&wfgpary,opg in 1

1.1. Definitions. —1.2, Abel’s transformation. — 18, »Orthogonal gys-
tems of functions. Fourier series. —1.4. The trigbpometrical system.—
15. Completness of the trigonometrical sysiém”— 1.6. Bessel'a in-
eguality. Parseval's relation. — 1.7. Remark{m’l )series and integrals,—
1.8. Miscellanecus theoreams and szamples{

CHAPTER II. Fourler coeiticients. E!‘é}sta for the convergence of
Fourler series . . . . . 8N, . . . . .., .. ... 14

2.1. Operations on Fourier series)™= 2.2, Modulus of continuity. Four-
ier coefficients, — 2.3 Formulas for partial eums. — 24. Dini’s test, —
2.5. Theorems onlocalizatiof,"s—"2 6. Fonctions of bounded variation,—
2.7. Tests of Lebesgue a 4\ Bini-Lipschitz, — 28. Tests of de la Val-
Iée-Poussin, Young, & (K ardy and Littlewcod. — 2.9, Miscellaneous
theorems and example

CHAPTER II. Summability of Fourier series . . . . . . . . . 40
X

31. Toeplitz, matrices. Abel and Cesare means.—3.2. Fejér's theo-
rem. — 3.3. Summability (C, 7} of Foorier series and conjugate series.—
34. Abel'S8"stmmability.— 3.5. The Cesaro summation of differentia-
ted sepies’< 3.6. Fourier sine series.- 3.7. Convergence factors. —
3.8. Sammability of Fourier-Stielties series. - 39, Miscellaneous theo-
remstdnd exzmples.

A
QH,}PTER 1V. Classes of functions and Foorier series. . . . . &4

N\

¢.1. Inequalities. —4 2. Mean convergence. The Riesz-Fischer theo-
rem, 4.3, Classes B, €, 5, and L, of tunctions. —4.4, Parseval’s re-

lations, — 4.5. Linsar operatlons.—l-{ﬁ Traosformations of Fourler
geries, -~ 4.7, Miscellaneous thecrems and examples,

CHAPTER V. Properties of some speclal series . . . ., . . . 108

2.1, Series with eoeificicnts monotonieslly tending to 0. — 5.2, Appro-
ximate eXpressions for such series.—5.3. A power series. — 5.4, La-
cunary serfes.—-5.5. Rademaeher's series.—36, Applications of Ra-
demacher’s functions, — 5.7. Miscellaneous theorems agd examples.



Table of Contents.

CHAPTER VI. The absolute convergence ol trigonomeatrical

peries . 131
8.1. The Lusin-Denjoy theorem.— 6.2, Fatou’s theorems. —- 8.3. The
absolute convergence of Fourter series.—&4. Szidon’s theorem oo
lacunary series, — 6.3, The theorems of Wiener aad Lévy. — 6.6, Mis-
cellapecus theorems and examples.

CHAPTER Vill. Conjugate series and complex methods in the )
theory of Fourler series P, 11

7.1. Sammability of conjupate series.—7.2. Conjugate serles and ¢
Fourier series.—7.8. Mean convergence of Fourier series. — 7.4, Priva-{ )
loff's theorem.—7.5. Power series of bounded variation. —78. Mis-
cellansona theorems and examples. R W
CHAPTER VIII. Divergence of Fourler serles. Gibbe’s /phenc-
MEMOD. . « « - o o o e e e LS 18T

8.1, Countinupus functions with divergent Fourier seriesm S8 A ﬂ‘}l{&{)-
rem of Faber and Le B, — Lebesgue's consjanis’ —B84 Hol-
mogoratis” ¥EY) a—&fﬁ a’@{b'%gg'llghenomeuon.‘ 6. Theorems of
Rogosingki.— 8.7. Cramérs theorem. —B.8. Miscallangous theorsms and
examples. 'S

CHAPTER IX. Further thoorems on FourieF coefflcients. Inte-

gration of fractional erder . %3 . . . . . . . . . . 189

9.1, Bemarks on the theorems of Hauadortf-Young and F. Riesz. —
9.2, M. Riesz's convezity theoremg — 43. Proof of F. Riesz's theo-
rem. — 9.4. Theorems of Paley. 5. Thecrewms of Hardy and Littje-
wood. —9.5. Banach’s theoremd or lacunary coefficients. — 9.7. Wie-
ner’s theorem on funciions‘of\bounded variation.-—9.8. Iategrale of
fractional order.— 9.9, Miscellaneous theorems and examples.

CHAPTER X. Furthel: \th\eorems on the sammahilit

¥y and con-
vergence of Fourier series .

237
10.1. An extensién’ of Fejér's thaorem. —10.2. Maximal theorems of
Hardy and Littlewood, — 103, Partial sums of S[f] for feil2 —

10.4, Sammability € of Fourier series.—10.5. Miacellaneous theorems
and ax: N

CHA?Q@R\KI. Riemann's theory of trigonometrical series . 267

J3, The Cantor-Lehesgne theorem and its generalization. -— 11.2, Rie-
..\'rgnnn’s am:! Fatou's theorems.— 11.3. Theprems of uniqueness. —
< :11.4_. The principle of localization, Rajebman’s theory of torma) multipli-
cation. —115. Sets of uniqueness and sets of wultiplicity, —11.6. Uni-

queness in the case of summabls series. —11.7. i -
A e Miscellaneons theo

CHAPTER XIl. Fourier’s integral

121, Fourier's single lniegral,
123. Summability of inteprala,

306

~—12.2, Foarier's rapeaied integrel, —
—12.4, Fourier transformas, e

TERMINOLOGICAL INDEX, NOTATIORS . . . . . . . . . 220
BIBLIOGRAPRY. . . . . . . , ., . . . .

321



PREFACE. X
(\A
'\

The theory of irigonometrical series of a siqgi'g\%ariable
is very extensive and is developing rapidly everysyear, but the
space devoted to it in the existing text-books iagm&&gf%"_l‘here‘should,
therefore, be room for a new book on\“'tﬁi\ﬁ"lmlbab[i* aﬁ?rﬁfu%j‘%é{f

The object of this treatise is to give am ‘account of the pre-
sent slate of ihe theory; bui, owing to&b} wide extent of the
snbject, it has been impossible to treat('h paris in equal detail.
In particular Fourier’s integral, whéée‘importance is mbre and
more apparent, certainly deservestaiore space; but an adequate
treatment would require a sapgya’te’ book.

Except for Lebesgue integration, an aquaintance with which
is assumed, the book doe’s{no’t’ presuppose any special knowledge;
the elements of Analysis ‘are sufficient, except at one or two
places. Besides thegiext, the book contains a number of miscel-
laneons examples \and* theorems, given at the end of every chapt-
er. Some of these results are important; most of them are ac-
companied by“Nndications of proofs, and so provide exercises for
the reader. )" -

Nu b‘f}fé in square brackets refer to the bibliography at the
end otg?he book.

~This book owes very much to Miss Mary L. Cartwright,
B\:P)]il., of Girton College, and Dr. 8. Saks of the University of
arsaw. Both kindly read the greater part of the manuscript
and offered many valuable suggestions. Miss Cartwright has also
helped me with the style in certain parts, and Dr. Saks in revis-
ing the proof-sheets. T wish to express my deep gratitude for the
assistance they have given.

A. Zygmund,
Wilno, Jaguary 1935.



CHAPTER 1. ~

Q)
Trigonometrical series and Fourier serfes.

L.k, Definitiens. Trigonometrical series aré series of the
form WO dbra{{l’ibl ary.org.in

(1) ba,+ 2 (ax cos kx + b sin RS,
\/
where the coefficients @, a,,..,¥58,, b,,\‘;re independent of the
real variable x. It is convenient to\provide the constant term of
frigonometrical series with the facfor 1/2. Except when otherwise
stated, we shall suppose, alwayﬂ, that the coefficients of the tri-
gonometrical series considered“are real. Since all the terms of
(1} are of period 2=, it is sufficient to study trigonometrical series
in any interval of lengibi\2r, e. g. in (0,21) or (— =, ).
Consider the ppwér series

\\

) 1g, +. 5 (ak iby) z*
on the unit, crrcle =g, The series (1) is the real part of (2).
The aérles
® M oa
(3 '\\“ 2 (ax 8in kx — by cos kx),
N k=1

(wth vanishing constant term) which multiplied by { and added
\mgcr (1) gives the power series (2), is called conjugaie to (1).

112, Summation of certain trigonometrical serles.
The fact that trigonometrical series are the real parts of power
geries facilitates in many cases finding the sums of the former.
For example, the series

1) Pux)=¢ +k§. rfcos kx, Q(x) =£,: % gin ko,



2 Chapter I Trigonometrical series and Fourler peries.

where 0 < <1, are the real and imaginary parts of the series
b4 2428+, whers z=re”*, and se we obtain without difficalty

1—r? —~—__TEX
@ POt i Y T I s s

Similarly, from the formula log 1/(1 — 2y =z + 22 4 ..., we obtainy

Seoskx __.H}___.__.__ ¢ \:\
=k d _H%]Ogi—Qr cosx-b—rz’ O )
@ | j
Qsinkx , aretg reinx ’ "N
A= R I1—rcosx m\\

where 0 < r <1, arctg 0= 0. Denoting by p,,(x), q,,(x) the n-th
partial sums (a=0Q,db&uliboft T Seifles (1) w{ﬂl r =1, we obtain
by the same argument

_sin(nt+dx ='(_:_073~7§x —cos(n+ 1 x
W pd= 2gindx ’ q,.{x).‘f:; 2sin§x

{A simple, although less natu\rgﬂ‘,:ﬁlethod of proving for example
the first formula in {4} would be fo multiply p. by 28in$ x and to
replace the products cos IQ 2 gin L x by differences of sines; then
all the terms, except the Jast, cancel). From {4} we deduce that
poAX) and %) are h(\tormly bounded, indeed less than 1/ginde
in absolute value{in every imterval 0 <e < x <28 —s

AS
1.13. :Qm complex form of trigonometrieal serles.
Applying Bdler’s formulae to cos kx, sin k¥, we may write the a-th
partlal.{um of 1.1{1) in the form

al

O so=tatil 2 [(ae — iB) €% 4 (an -+ B} o=,

\ﬁ we define ay, by for any integral % by the conditions a_p = ay,
&_, = — by, (thus, in particular, ¥, = 0), we see that s, is the nth
symmeliric partial sum, i. e. the sum of 21 4 1 terms with indices
not exceeding # in absolute value, of the Laurent series

+M
m k-—z oy &4

Here ¢, is conjugate to ;.

(26, = ay — iba).

Conversely, any series (1) with this
property can be written ia the form 1. 1(1). Whenever we apeak



11.22] Abel’s transformation. 3

of convergence or summability of series (1}, we shall always mean
the limit, ordinary or generalized, of the symmetrie partial sums.

The series conjugate to (1) may be obtained from the latter,
replacing in it ¢4 by — ey sign %, where signz = z/iz|if 2 54 0, and
sign0=0.

1.2, Abel’s transformation:
-1

(1} Z Uy vy = Z Uy (0r — Onp1) ~ Upoy O+ Up o, O\
=m

where 0 <_m <n, Ug =uy+u+..tuitk =0 U_ = .O.s:\This
formula, which can be easily verified, corresponds to integration
by parts in the theory of integration, and is a very us"eful teol in
the general theory of series. We shall call a sequence Uy Ty, oo OF
bounded variation it the series |v, — v, |+ [Fy HAnlibyargetigpiv
gent. Without aiming at complete generahtg,@w mention the fol-
lowing consequences of (1) in the case m =<

1.21a) [f a series u(x) 4+ w,(x) + ¢ "co}werges uniformly and
{vs} is of bounded varlation, the ser;es nlxyw, + v {xy, + ... con-
verges uniformly.
by {f uy(x) +a(x}+ ... kas;ts’ partmd sums uniformly bounded,
{vs} is of bounded variation and D9 0, the series u{xyv,+ 1, (x)yv, +
converges uniformiy. K

1.22. A coroll rx “of Abel’s formula. If ¥, Unii, ... U
are non-negative amd don-increasing, the left-hand side of 1.2(1)
does not exceed 20sMax | Us| (mt — 1 < k< 1) in absolute value.
In fact, it does not exceed Max | U5 | multiplied by (¥m —Vmp}+...
+ (Up—t — 'Un) Ji'\am + Un == 20p.

1.2,8.§Convergenee of a class of trigonometrical
serles. The problems of convergence of 1.1{1) are, except in the
truuai‘ case when |a,|-+|b |+1ay|+ |8 |+... < oo, always delicate.
Same rather gpecial but, none the less, important results follow
from Theorem 1.21. Applying it to the series

) La, —I—kZ tx co8 kX, kZ ax sin &x,
=1 =1

and taking into account the last remark in § 1.12, we obtain:

If {ax}. is of boanded variation and ay -0, in particular if a,
monotonically decreases to 0, the series {1} converge uniformly in
any interval 0<\s < x < 2r — &,



4 Chapter 1. Trigonometrieal series and Fouorier series.

As regards the neighbourhood of x =0, the behaviour of
sine and cosine series may be quile different. In particular, the
former always converge for x = 0, whereas ihe counvergence of
the latter is equivalent to that of L a4+ a;+.. Y.

Transforming the arpument x we may present the last theo-
rem in other, equivalent, forms. We shall be contented with the
following statement.

If {ay} is of bounded wariation and ay— 0, then the series
ta,—a; cosx4a, cos 28 — .., g sinx—a,sin2x+ .. conw;-g?\
aniformly in (0, 2r), except in arbitrarily small ne:gkbourkwds
of x=m=x

For the proof 1t ias sufficient to replace in (1) x by‘ 5 +1:

\

1.3. Orthogonal systems of funetions. F'ou:ier series.
A system of*“r%ﬂj'%fdﬁ{ﬂfﬂéytpg{ﬁj] 91(x), e o Pu(xY > defined in an
interval (@, b) ie said to be orthogonal in thi{‘iﬁiéwal it

0 {m=E N\
W fcpm(xm(x)dx I i

In particulsr, no g vanishes jdentlcally I =¥N=..=1,
the system is said, in addition, to.be normal. It {va) is orthogonal
{@a/h} is orthogonal and nofmal, The importance of orthogonat
systems is based on the™ ?bllowmg fact. Suppose that a series
€6 PolX) 4 €, . (x) + ..., where o4, €y, ... are constants, eonverges in
{a, 5 to a function/fi{x). Multiplying both sides of the formula
(X} = £ 9uf %) 4+, F 65 wa(x) 4 ... by ¢.{x) and integrating over the
range (a, b), we\fmd in virtue of (1), that

N\
@ N . ffcp,,dx (7=0,1,.).
* ‘ l

T‘ms argument is purely formal, but in some cages, for exam-
p{e it the series defining f converges uniformly, ¢. are conti-
ndous and {g,&) is finite, it is eamsily justified. It suggests the
tollowing very important problem. Suppose that we have a fune-
tion f(x) detined in (4,6) Having formed the numbers t:,, by means
of (2}, we write, quite formally,

3) FOx) ~ e polx) + 65 ¢,(x) + ...

'} See also Chapter ¥,



[1.32] Orthogonal systems. 5

and ecall the series on the right the Fourier series of f(x), with
respect to the system {g.}. The numbers ¢, are called the Fourier
coefficients of f. The sign ~ in (8) only means that the num-
bers ¢, are connected with f by the formula (2) and does not
imply in the least that the series is convergent, still less that
it converges to /. Now, what are the properties of this series?
In what sense does it ‘represent’ f? Q

This book is devoted to the study of one, very special, but
extremely important, orthogonal system, viz. the trigonometrical
system, and so we shall study the general theory on].y‘m so far

as it bears relation on this system !). N

If an orthogonal system is to be at all useful for the deve-
topment of functions, it should be compég{gw_{gglt;ﬁ}iB?:gxla};e_aoqghﬂun-
ction 4 is added te {¢.}, the new system cedses to be orthogonal
In tfact, otherwise there would exist a funetlied, just the function 9,
ot vanishing identically, whose Fourier ?erles with respect to {p,)
would consist entirely of zeros. )

")
<N

1.31. The notion of orlha'goﬁality, and hence that of Fourier
coeflicients and Fourier series, may be extended to the ease of
complex 9,. We need only"modify conditions 1.3(1) slightly, by re-
placing the produets e},,\p by %m@a, or, what is the same thing,
bBY @mPn I Slmtlar}x\m (2) we replace fgx by fon

1.82, Radeh:acher’s system. The following very instruc-
tive orthogenal and normal system was first considered by Ra-
demach€n®): pa(x) = sign sin (2" =x} (0 < x <{1). The function
%a(%) gsgumes alternately the values 1 in the interjor of the
mtervas (0, 271, (2--1, 22—}, ., The preof of orthogonality

,L& \?*ery simple and may be left to the reader. The system is not
cpmplete, since e. g. the function ¢ (x) =1 may be added to it.

£

) We refer the reader interested in wider problems ito a book by
Kaczmarz and Steinhans which is to appear in this series.

7y We denote by z=x —iv the number conjogate to 2z = x 4 fy. How-
ever the bar. will also be used to denote the covjugate series, funclions ete,
where the word ‘conjugate’ has a different meanipg. No misunderstanding
will ocenr if the reader takes into account the context.

% Rademacher [1]. See also Kaczmarz and Steinhaus (1)
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1.4. The trlgonometrical system. The aystem of func-

tions 1, cos X, sin x, cos 2x,sin2x, .. ,i.e. the trigonometrical system,
a3

is orthogonal in (— =, 7). In faet, let Inn = f sin mx sin nx dx, and
-

let fon, hn denote the corresponding integrais with cog mx sin X

and cos mx cos nx. Integrating the formula 2 sin mx sinng =

= ¢os {m — ) x — cos (M + n} x and taking into account tha perios

dicity of trigonometrical functions, we find that /n. =0 when-

ever ms=n. Similarly fn. =0, s =0, the former regui;‘being

true even when m = #. The Vs are now 2m, @, %, .. a0d so, if

for a given f we put ’

¢ ¢
« &
T

™ S
M a=> [fOcoshtdr, b= [ r@sinkeat,
wrorw . Jhraulibrary org.in LAY
the Fourier series of f may be written in ilie form 1.1(1). Changing
the definition of the preceding paragraph/slightly in the case of
8,, we shall call a;, &, the Fourier cogificients of f. We shall denote
by € [f] the Fourier series of f apd-by & [f] the conjugate series.

1t is obvious that, if w,, p; are two 'constants, then & fp, f; + 04 fol =
= @A+ . &(f) .

-_Tr

1.41. If a series Ll{(() converges uniformly to a function f{x},
the coefficients a, b a\f‘e. given by the formulae 1.4(1). The proof
is the same as that which led to the formula 1.3(2).

142, 1 fl\m. function f is even, that is if f{— x) = f(x), the
coefficients ¥{ vanish and the integral defining e, may be repla-
ced by twicé the integral over the interval (0,=). If f is odd,
that is jl\\'f'('- X)=— f(x), then a,=10 and the second integrat in (1)
may, be Teplaced by twice the iategral over (0, %).

0 1.43. The complex form of Fourler series. The sys-

tem of complex functiong ¢ (A=0,+1,%+2,..) is orthogonal in
{(— =, 7). Putting

1 _
) o= _f flyeddt  (R=0,11,..),

we may write the Fourier series, with respect to this system, in
the. fo::m.l.li-l{l). Let us suppose, as we always shall do, except
when it is stated otherwise, that f is real, and put 2¢4 = a, — b,
Then au, b, are given by 14(1) and we see that this Fourier series

7\



[1.45} The trigonometrical syetem. T

is equivalent to the trigonometrical Fourier series. However the
complex form is very convenient and we shall frequeniy use it.

1.44. it is also convenient to suppose that the functions
whose Fourier series we consider are defined not enly in (—m, n),
but for all real x by the condition of periodicity: f (x4 2x) = f(x),
and, unless a statement to the contrary is made, we shall alway
agsume this. Hence, we assume, in particular, that f(— x)=7(®),
a condition which we may always suppose saiisfied !). Whénever
we say that a series is the Founrier series of a continuuué fun-
ction f, we mesan fhat f is continuous in {— co, + m)

It is obvious that if a function § {x) is of perm‘d é-r the in-
tegrals of ¢, taken over arbitrary intervals of l&ngth 2z, are all
equal, In particular, in 1.4(1) we mayviatdlratdilopey eH8 ihter-
val (0, 2x), O

1.45. However, sometimes it is mq é‘konvenient to consider
the trigonometrical system not in (0,2¢) but in another interval,
e. g. in {0,1). The system {e**+} ig orthogonal and normsl in the
latter interval, so that the compiex Fourier coefficients assume
now the form \

Ce= f £ e-w,dt (k=0,%1,+2,..).

1.46. Integr f{(m and Fourier serfes. The problems
of the theory of)Fobrier series are closely connected with the
netion of mtegra{mn. In the preceding definiliens we assumed ta-
citly that the pmducts feos kx, fsin kx were integrable. Hence we
may consldqr Fourier-Riemann, Fourier-Lebesgue, Fourier-Denjoy
series, ﬂgcord1ng to the way in which the integrals are defined *}.
Excepf\when otherwise stated, integrals are always Lebesgue in-
tegéals. It is assumed that the reader knows the elements of the

(Tebesgue theory of integration. Proofs of results of a more spe-
eial character will be given in the text ).

Every integrable function f(x){(0 < x < 2r) has its Fourier
series. It is even sufficient for f to be defined almost everywhere
in (0,2}, i. e. everywhere, except in a set of measure 0. Two

) See § 1.46.

%) For a genera! discussion see Luein [1), [2).

9 The few passages in which the Denjoy integral is mentionned are
not essential and may be omitted.



8 Chapter 1, Trigonometrical series and Fourier series.

functions f, and f, which are equal slmost everywhere have the
same Fourier series and, following the usage of the Lebesgue the-

ory, we call them equivalent: fi(x) = fi(x} and do not distinguizh
them from each other.

1.47. Fourier-Stielties series. Let F (x) be a function
of bounded variation, defined in (0, 2x). Consider ihe series 1.1{1}~\
with coefficienis given by the formulae

pird
O = 1_‘ cos ktdF(2), b,,-_ f sin kt dF(8), «

N

2\

\ X

the integrals bemg Riemann-Stieltjes integrals, Wishail write

(2) Www‘gﬁ.&&hﬁfé%&gﬁﬂk cos kx + b{z {i a k:«;}

and call the series on the right the Fouzikr+Stieltjes series of dF.
If & is absolutely continuous and F'(x):xtf (x), then 3 {dF]= &[fl

It is eonvenient to define F(x) for all x by the condition
F{x+28) - F(x)= F(2r) — F(0).'We may then integrate in the
formulae (1) over any interval ofS length 2%. A necessary and suf—
ficient condition for £ {o ben penodlc is: =g, = F(28) — F(0) =
It follows that the func’uon F(x) — a,x{2 igs periodic.

L&, The trzga}&h i‘nca! system is complete. This result is
a simple corollary, eorems which we encounter later, but the

following elementat-y procl, due to Lebesgue, is interesting in

itself. Supposé\first that there is a continnous and periodic £ 0

whose Fo“u\rjkr coefficients all vanish. It follows that

TN
\tpr overy tirigonometrical polynomial 7.!). We may suppose
without jess of generality that there exists a point x, and two

numpers &, &> 0, such that f(x)™>2 for x e /= (x, — 5, x, 4 &) 2.
It will be enough to show that there exists a sequence { 7.(x}}, such

[roTimac=0

1 '} Trigonometrical polynomials of order n# are finite sums of ihe form
% ot-{neosx 4B sinx) 4+ . - (o, cosnx 4B, ain nx).
Y} xeAmeans: x beloags fo = sat A x
€A means: x do
to & ACBmenns: A 18 n subset of B, e not belong



[1.6] Bessal's inequality, Parseval’s relation. 9

that (i} Tu(x}2>1 in [, (i) T.(x) tends uniformly to 4 oo in every
interval /' interior to /, (iif) Tn.(x) are uniformly bounded outside
I (mod 2z). For the left-hand side of (1) is the sum of two integrals,
extended respectively over [ and the rest of {(—«, ). The first of
them exceeds | I'l, Max Tu{(x) (x ¢ ) » co). The second is bounded
and so (1) is impossible for large n. We put 7, =", where_
£(x}= 1+ cos {x — x,) —cos & In this case 7 (x) =1 in /, t(x))l
in F,|£(x)| <1 for x e[ {(mod 2x}.

Suppose now f only integrable and let F{x) be the mtegral
of f over (—m, %), Hence F{-—x)=:0, and the condition M, = (
involves F (=)= 0. Integrating 1.4(1) by parts we obtainl A} = B, =
= Ay = B, = .. =0, where 4, A,, B, ... are the Fourigr{doefficients
of F. Hence, for a suifable constant ¢, the cg 'ﬂrm%us function
F—c will have all its Fourier coefficidhts” erj'? te .Y 4 S0
F{x)=1¢. Since F(— =) =0, we obtain ultim&}e‘ly Fi{xy=0, i. e,
f=0. The reader will observe that the.proof remains valid with
more general definitions of an integral ~than that of Lebesgue.

1.51. Corellaries. (i) /f f arz‘d fz have the same Fouarier series
then fi=f,. (i) 1If, for f ronrmzzoas eln corwerges uniformly,
it converges to f Let & (x) denote the sum of : Z{f]. Then the
coefficients of = [ f] are tl\ & Fourier coefficients of g (see § 1.41),
and so f=g.

O

1.6. Bessel’s'inequality. Parseval’s relation. We may
also be led to the\“nﬁfion of Fourier coefficients by the following
eonsiderations, \Det {¢.} be a system of functions orlhogonal and
normal in_apjnterval (g, &), and let f be a fonetion such that f?
is mtegralie"m (a,8). We fix an integer n = 0, put 7 =1, ¢, +
Te91+ et 72 P2 and then ask what values of the constants
oo, kiTe \. ¥ make the integral

}1) ] (f— Tszx~f(f” AT+ Tydx= ff?dx 22€m+2n

a mivimum, &, ¢, ... being the Fourier coetticients of /. The last
two sums can he written as—1, (2, — 1) — ...~ 7 {2, — 1) and
since the function # (# — #) assumes its maximum when ¥ = a/2,
we gee that the left-hand side of (1), which is called the gquadratic

%y | E| denotes the measure of a set E.
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approximation to f by T, is a minimum when Y, = 4 (k=0,1,..1n,
that is when T is the n-th partial sum of the Fourier series of f 7).
Putting 7s = ¢; and taking into aecount that the integral on
the left in (1) is non-negative, we obtain the very important
relation A~
@ )j &< [ 2 dx,

which is called ‘Bessei’s inequality’.
we have also:

O\
N\
Since # in (2} is arbitrary,

7
)

- b 4,
(3) Ya< | frdx 'S
=0 a

b orgin )
For soﬁ‘{é“"é’y%uf'gnal%h{%ﬂryhgl sgign < in (3) ma?\\b‘e replaced by = and
the equation we then obtain is called {Parsevai’s relation’.

Sinee the system 1/y2r, (cos x)/{=) (éin x)/V 7, ... is orthogonal

and normal, we obtain frem (8}, ‘g’si'l]g the notation 1.4(1), ithat

«l
v o
1

@ Lo 3 b ) < [Pz,
. k?l ™ ;
for any f with integrp{b’lb square.
Coroliary, 1§ }\\is integrable, then ax 0, b, 0.

1.61. The aTgument used in § 1.6 shows that, it & {f] cen-
verges umtqrmly, in particular, if f is a trigonometrical poiy-
nomial, th@rﬂ is eguality in (4).

’l}. Remarks on serles and integrals. [t will be con-
ve\ment to collect here a few elemeniary theorems on series and
mtegrals, which will often be used in the seguel. Lef f(x) and

g(x)>0 be two functions defined for x>>x, We say that
70— 0 (g (%)) it f(¥)/g (X) >0 as xso00. If f(x)/& (¥) is boun-
ded for all x sufficiently large, we write f(x)= O(g(x)). The
same notation is used when x tends to a finite limit, or to — oo,
or even when X tends to its limit thruugh a discrete sequence of

values. Ia particular, an expresion is o(l) or O(1) i it tends to 0
or is bounded, as the case may be.

9 Teepler {1l
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Two functions f(x) and g (x)} will be called asymptotically
equel in the neighbourhood of x, if f{x)/g{x)+1 as x - x,, and
we write f(x) = g (x). 1f there exist two constants A >0, B> (,
sach that A < f(x)/g () < B for x sufficiently near x,, we shall
say thet f and g are of the same order in the neighbourhood
of x, and write f{x) ~ g(x). Similar definitions and notations.
wili be used for sequences.

Examples: = 0{xH as x-o0, x*=0{(x) as 'n—>\0
o'rr-_O(|1——r|}asr+1 nl=0(1) as n~ oo, n4yn Lyh as
H oo, 8Xp 2t~ eXp.(n+8in #) as 7> oce M) .

LI Let f(x) and g(x)> 0 be Lo Myotibibedeiefngdrior
8 < x < b and integrable in any interval {a, b— ). LEEF (x) and G (x)
be the integrals of f, g over {a, x). If f(x)=0o(ml%)) and G{x) - co
as x = b, then F(x)=o0{G(x)). Suppose th,al‘h"(x) lfg {x)<&/2 for
@ < x, < xXx<<b. For such values of & QB have the inequality

)| < ff|dt+[lf dt < ff|dz+ G (x). Since G (x) > oo,

the last sum is less than = G{x)” for X=X (X, <0 x, < 8) and,
since e ig arbitrary, the theonem’ follows.

1,72. In the above Qneorem the vdle played by a and » can,
obviously, be reversedv ,Pf a =10, H=o0c, it has an analogue for
finite sums: Let fa ahi gn >0 be two sequences, Fp=fy + oo + fur
Gp=gy o 4 8ns, iff,,_o(g,,) Gn + co, then Fy=0{({,). The proof
is essentially the‘same as for integrals.

1.73.,@';&(3" proof of the. following result is stili simpler. /f
the series N, -{-)‘1 wr Zo &1+ oy 1 > 0, converge and if,
Fo=fahfast + oy Go = &n + gu1 + ., then fo=0(g,) implies
F :\o(f},,)

) 174, Let fx) (x=-0) be a positive, finite, monotonic function.
Let Fx) be the integral of f over (0, x) and Fy= FOMf (.4 f{n).
Then (i) if f is decreasing, F(n)— F, tends to a finite limit C,
(ii} if f increases, then F{n) < Fo < F(n)+4f(n). lan order to prove
(i) we observe thai,from geometrical considerations,we may write
JR < Fk)— Fle— 1) < flk—1} or, what is the same thing,
0L F{R)—Flk—1)—f(k) < flh—1—fk), k=1,2, ... Since

1} expx means 2.
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the serics with terms f{k - 1) — f{k) converges, the same may
be said of the series with terms F(k) — F(k — 1) — f (k) and partial
sumas F(n)— F.+f Q).

For example, the difference 1+ 1/2+ ...+ 1/z—logn tends
to a constant C, usually called Euler's constant,

To obtain (ii) we proceed similarly, summing the inequalities
fle-—-VD < FR—Flk—1 << f(R) from k=1 to n. ~
1741, If either f(x) decreases and F(x) - o0, or | (x)' .z'nr{re-
ases and f(x)/F(x)~ 0, then F, = F(n). _

1.742. If f(x)>> 0 is decreasing and integrable,o'gef {0, o),
F(x) denotes the integral of f over (x,c0), and Fu=f(m)/ (nt1)+ ...,

then 0 < Fn— F(n) < f(r). In particular, it fAX)/F (x)+0, we
have F, ~ ﬁz{\,{yy\dbrau ibrary.org.in 3

In cases when F(n) can be easily obtajneéd, the above theo-
rems give us approximate expressions for F..

n

na+l gl ;‘ \ n"ﬁ"i‘t
- L » . ':5 o~ — =g 1 .
Examples: é‘lk o xg;;k =Ty fa>~-1, 8> 1}

1.8. Miscellaneous theorémis and examples.

1. Show that sin x4 Y/, si0®x | 1/, sin 8x 4 .. converges to (= — x)/2 in
the interior, and to O at the<euia, of {0, 27}

2. Let () fi(x), | x (55, be even, equal to 1 in {0, k) apd to O in (&, =),
O <R < r, (i) filx), | x;\QG.' ‘be even, contiausus, vanishing in {2k, =), D < k< /2,
equal te 1 at x =0, “and Mnear in (0,28), (i) A0 = signx, lx|<m=
{iv) ¢ () = (n—rt),""z,, bl x<2n, (v} Fy=mx [xf2z] 1. Bhow that

N im otk i
filxy ~ o L £ ) [Eﬂﬂ (E]l:é{__ c08 nX l ,

an

2h
21 )co- nx]. fgix)’v;[%-!—
:.'\“0
f’()o,%’if ein (2n-- 1) x

A=l

o Binax
. ¥y o~ B R AX
*a=o 2“+1 ‘P() a!gl 1
"\” o
\m;“ﬂ"(x)"'i-l-zcuux, |sin 5 (= 2 3 S0 2
A=l

® 2 dnt—1
3. Let f{x) £ 0 be even, £{x}3£0 od4, both noo-negative in (0, ), and
18t ag. @y, .y by, 6y,

. be the Fourier cosfficients of fand i
- ‘ £ respeciivaly, Show
that a,, | <lo, | b, | <Cnby, m == L2 .., n=23..

{Prove, by induction, the ine i i i Bi
. quality |sinnfj< 2 tl. -
dory [1], Rogusinaki (11). arielnil Caratheo

'Y [»] denoctes the integral part of y,
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4, Each of the systems 1, eos.x, cos 2x,.. and sinx, sin 2, .. is ortho-
gonal and complete iu {0, =),

5. Let {gﬂ}denota Rademacher’s system. Put yo{(f) =1, 1) = 5, (£ 5, ().
r:],'k{.‘)j it N=2" 42" ..+ 2% Show that the system [} is orthogonal

normal and aomplete in (0, 1)

it ff {tlﬂ; (1 -+ g,(x) ,{t)) dt = 0 for every x and n, and if Fis an integral‘“\-
of ‘hen F'ix} =10 at almost every x. The system {f\,} was first cousid,eted.
by Walah [1); see also Kaezmarz [1], Paley [1]].

5. Orthogonal and normal systems may be defined also in sp)es nf
higher dimensions, the interval of integration being replaced by, ap.y meas-
rable set. Show that if {q:m(x)} and {LPRU)} ars orthogonal, normhl “and com-
pleie in the intervals a =l x «ld, oy < d respectively, theu'ﬂge doubly infi-
nite system {g,(x) Lb,,(}’)} is orthogosnal, normal and comﬁé@fm@‘ﬂéwﬁﬂ{@ @g.in
with opposite corners at the points (a,c), (&, d).

153 fj F O30 6,5 byt dx dy=0 for all m, r,z\\lie functions f,(3») —
B \\
fffx Nea{)dx vanish for almost every »4 apd g0 f(x, v} vanishes almost

’5

ewer)where on almost every line vy = c(ulﬂi]&
N
\
3

~"x\\
’\'\\ ’
A »
7" N
X '\,)
:.\, >
~G
£ 3
N
R\
z'\‘.‘;
o \¥%



CHAPTER IL
L\
Fourier coefficients. Tests for the convergenee
of Fourier series. 3

al
R 5

2.1. QperatienshomFodtler series. We J)eg’m by pro-
ving a few theorems which show that certain formial operations

on Fourier series are legitimale. \;
L ]
If F(x) ~ 2 Cm 8™ and # s cam}ant then we have
Fea

Flxtu) ~ I emem om = § a(u) + E (@ndt) o8 mx-+-ba() sin mx),

where am(u) =l COS MU T O su; }m.z b i) = B COS ML — Oy 80 ML

Y

in fact, [f{x 4 u) e""‘“\ﬂx = ff(x-{- 1) gmimlatnd g o gl

AL Let £ (B, jfc,,, g g (x) ~ Zd etm Then

X

1) k{x}‘: — f flix+H g~ 2 Cne B £,

More pre\\isely under the conditions of the theorem, (i) the func-
tion 4 {*} exists for almost all ¥ and is integrable, (ii) its Fourier
coéit';tzlents are cmd_n'). The formulae in {1} are obtained by
e,rm-by ~{erm mtegratmn of the product of the Lyurent series for
Elf(x+ )] and 2 lg}

Te prove (i) it 18 sufficient to suppose that f =0, g >0
Let falx) = Min (F(x), n), &:(x)= Min (g (x), #), andf let kfx) be
the function obtained from f., g, by means of (1). Using Fubini’s

W, . H Young [
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well known theorem on the inversion of the order of integration,
we have

27 n bao
[ mdz= [ dx [ fulx+ 1) g (t) at =

on n it am
fgn(t) [j flx+ 8 dx] dt = ff,.(x) dxfg,,(x} dx. \
0 0 a [ ',\:\
Since {f(f) ga(x + £} is increasing and tends to f(f) gi,(\x + 5,
it follows that {#.(x)} is also increasing and tends to £'¢x). Hence,
making £ oo, we find from (2) that £ (x) is integrable, and, in
particular, finite almost everywhere. wwwdbraulibrary org.in
Using Fubini's theorem again, we have
A\
1 ;i“ 1 2 n < 1~\
§;r J E{x)etmxdx = oo ng(t) gimt Lff(_,igl_ 1) e—imx+) dxl A =Cmd_m

[}

We leave it to the raadgpﬁ{t’o‘%earrange @A in the form

with real coefficients. o

2.12, Differentiation of Fourler series. Suppose ihat
J(x) is an integral, ~i.’\'é. is absolutely continuous. Integrating by
parts, we have, fonm'ss 0,

: 1'\¢~ 2; -

¢ 1
(1) Cr 2
N\ 2

i
- . . ch
/ ferm dx = ff’ g=imx g =T,
T 2rim im

Or ¢y #mcm, ¢n being the Fourier coefficient of f'. Since f is
Pﬂliio\ciii?, we find that ¢/=0. In other words, if S'[f] denotes
the\ result of differentiating &[f] term by term, we have

&) = S

+eo -
fr~i Y mey eime = X m (b co8 mx — ay sin mx).
- m=1

If fis a k-th integral, then S®|[f} =& [f®)

2.18. Suppose that f has a number of simple discontinuities
at points 0 < x, < x, < ... < %, < 2« and that it is absolutely con-
’ tinuous in the interior of each interval (X, %r11). Let ns put
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= [f i+ 0) ~ f (% — O)n. Then @ |f]— B1f] = dy D lx —x)+
+ oA dr D (x — x4), where D (X} =13+ cos x+cos 2x + ... 7).

Let 9{x) be periodic and equal to (z — x}/2 for 0 <x <32,
tp(O) =¢(2n) =0. Sinee d;p{x —x) has at x; the same jump
s f(x), the difference g(x) = f(x}) — ®(x), where P (x)=
= d,_ ¢(x — x)+ ..+ deg(x — x), is everywhere contipnous,
indeed ahsolutely continnous, Moreover, except at the poiits

X @ ~f'= (@ +..+dy2=C Now &[f] = &[P] + 3fgl=
=[]+ Elg=& [P+ S1f + ] = &[]+ 2'[2] + & “Taking
into account the particular form of C and &' [P] (§ 1. 8 2 Ew)}, the
result follows.

\

2.14. Let F({x) be a funetion of bounded vianatlon, s¢ that,

if £ are the ¢ o%!fg Q}}Elﬂf & [dF), {hevgifference F—c,%
is periodic 65‘”{‘13 et Fé'

Founer e\()effiments of the latter
function. Then, for m =0, \

N 021'
Cn= L [ (F~eu) e de = A f e—ims d (F — ¢, %) =
1: im

Let us agree to write 2

F(x) ~cx+C, +2 -—"5\{:”’” instead of F{x) — cpx ~ cu+2' ‘i'f eims

where ' denotes,t}}}t the term for which m =0 is omitfed, i ¢
we Tepresent, f\.48 the sum of 2 linear and a periodic function.
Then &€ [dF\i8" obtained by formal ditferentiation of the former
peries, that is, the class of Fourier-SteeItjes series, and that of for-

mallg differentiated Fourier series of functions of bounded variation
ares tical,

2.15. Integration of Fourier serles. Let f be periodie

} ?nd F an integral of f. Since F(x+ 21) — F(x) is equal to the

integral of f over (x, x4 2=}, or, what is the same thing, over
{0, 2%), a necessary and aufficient condilion for the perlodicity
of F is that the constant term of &[f] should vanish. Suppose

') The asries D{x), which is very imporiant in the theory of Foarler
Beries, diverges everywhers.

However, it is suummable to O, for example by
Abel's methed, it x+0 (med 2r),
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-

this condition satisfied. Then Z[f] is obtained by formal diffe-
rentigtion of 2 [F), i. e.

o= = @ 6 -
(1) Flx)~ C4+ 3 Lm e = 4 3 4 8in mx b,,,cosm)_c_
o m=1 m
Here C is the constant of integration and depends on the choige\
of £ It ¢, £ 0, the periodic function F— ¢,x is an integral ‘of
f—¢, and the series in (1) is & [F — c,x]. ¢\

Example. Let fy(x), fi(%), .. fl#), .., 0<x<2%, be, the fun-
ctions defined by the conditions (i) f,(x) = — 1, (i) j}(x)’«.:f;,_l(x),
(itij the integral of f; over (0, 2%} vanishes, k\,——-'gl, 2, .. The

o

L gty N
reader will easily verify that fi(x} ~ > ;%%W‘aggam%wief%m

M==—ou
(0, 2=) the function fi(x) is a polynomial pf\hrder k.
R
2.2. Modulus of continuity. et 7 (x) be a function de-
fined for a < x < b let w (3 = o {8 f¥ = Max 'f(x) — f{(x,)| for

all %, x, belonging to (a,8) and’such that 'x, —x,! <8 The
function o (3} is called the moduhis of continuity of f1) and this
notion is very useful in the™theory of Fourier series. The fun-
ction £ is continuous if afid only if « (3) > 0 with &. If o (8) << Ca%,
where 0 < 2 <71 and ( Henotes a number independent of 5, we
say that f satisfies the,Lipschitz condition of order a, or fe Lip a,
in {2, b). The restriction « < 1 is quite natural, since if w (8)/3 - 0
with &, f'(x) exists’and is equal to 0 everywhere, so that f=-const.

Supposeygew for simplicity that (a,5) coincides with (0, 2r)
and considéh'a periodie and integrable function f, not necessarily

I\ - b1
conti.rfti'ous‘ Let @(5) = w,(%; /) = Max f|f{x + 8 —F{x)| dx for
SN ¢

O
aIN0V<Z % <2 8. The function o,{8) will be called the integral mo-
{us of continuity of f.

2.201. For every integrable f, limw,(Z; f) =0 as 550, Gi-
ven a function g, let /(g) denote the integral of ;g| over (0, 2=).
If for any >0 we have =/, +/, where o,5f)—>0 with 3,
and /(f,)<e, then (& £}~ 0. In fact: w,(3; ) < o {8 fi}+0,(8; f) <
Sofif)+2/(f,)<3s, if 0<3 <. Now the theorem is

) Lebssgue [1}
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certainly irue when £ is the characteristic function of a set ')
consisting of a finite number of intervals, hence it is true also
when E is an arbitrary open set, and conseguently when £ is
measurable. It follows that the theorem holds when f assumes
only a finjite pumber of values, hence when f is bounded, and
finally when f is integrable. ~

2.21. If cw are the complex Fourier coefficients of & fzm-
ction f, then .\
®  leal<tolZ) lal<galEl A
Replac:ng x by x -+ =/m in the integral defmmg 4@ we have that
21:::,! is equal to

www.dbylibrapy.org.in \
Jf(x)e"imdx = f Ey}ﬁm dx= if{lf\(\x') —f x+.f.)]e—fmdx

and the last mtegral does not exceed either zo(%/m}) or $ w(x/m)
in absolute value,

),’

2.211. The Rlemann<Lebesgue theorem. The Fourier
coefficients of integrable functions tend to 0. This follows from
Theorem 2.201 and thedsecond fermula 2.21(1), A slightly sim-
pler proof runs as ,ﬁﬁll}ws: F=F1+F, where f, is bounded aed
I(fy<e (J(f) has ihe same meaning as in § 2.201). Cor-
respondingly, ex\= ¢l + ¢, where |ch] < I(fo)/2x < ¢/2% and
o0 (§ 1.'6‘, Corollary). Hence em| < leh| + | <t for m>m,

2242f feLipa (0<a < 1), thent ¢m = O (m—2)?), Here O
cann; hé Teplaced by o (§ 2.9.8), except in the case « = 1. in this

case{sihce f is absolutely continuons, the differentiated & [f] is
stithia Fourier series, so that ¢w =0 ().

NN

N\
N 2218, If f is of bounded wariation, then |an.|< Vim,
om] < Vim, m=1,2, ..., where V denotes the total variation of f
over {0, 2r). Suppose first that f is non-deereasing and > 0.
Using the second mean-value theorem we have

Rl =ff(x) cos mx dx =f(21=){cus mxdx, 0<t<2z
2 »

) The funclion equal to 1 in a set £ and
£
characteristic fuuction ut E. 0 clsawbers is called the

) Lebvesgue [t].
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and 52 [ @n| < 2F(2x)/zm. In the general case, since f=f, — fi,
where f|, f, are respectively the positive and negative varia-
tions of f, we find that |a.|, and similarly | 3., does not exceed
2 (£} + fi@n)l/mm = 2Virm < Vim. _

The result can also be stated in the following form: fke
coefficients of © [df] form a bounded sequence. The simplest exam-
ples show that thig result cannot be improved (§ 1.8.2(v)). The fatt™
that it cannot be improved even when f is of bounded varjatioh
and continuous lies much deeper. We state without prgofithe
following result, which will be established in Ch. XI. | Let C be
the well-known ternary set of Cantor constructed on (@ 2%). If f(x)
is any function constant In each of the intervals complementary to
C, but not equivalent to a constant in (0, 2x), the “{';@Jé% gpf]’ﬂgg?%tlsg n
of | are not o (1/n).

Taking f continuous and of bounded\\vanatmu we obtain
the required example. 8

S J
AN

2.32. Fourier-Rlemann coefficients. Theorem 2211 is no looger
true for Fourier-Riemann eries. Let n.': v

®

Sl = _{x"’ cos 1,|’x) D<v<5§, S = Ze‘“ Boins

=1
It was shown by Rismann 1)\ghat the Fourier ceefficients of the fuaction f,
which iz integrable R, are\ppt netessarily o(1), and not even o(ﬂﬂ_z“)"‘) It
can alge be proved th\kt\fha real and imaginary paris of the series S(x)
are both Fourier-Riemann series, if only 0 <la <1, p=<(2/2%)., We will give
here = stronger pXatnple, based on the fact that the integral of sin®nrx over
{2, b) tends ta (H-Sa)}2 as n-* oo

2.221 y .'G}wn an arbitrary sequence of numbers kYoo, b, =o(n), there
exists a }kgct:or: f integrable R, whose sine coefficients b exceed hy for infi-
itely nmapy n%).

Let b, =M 5, +0 We shall define a sequence of non-overlapping in-
’{ervhls = (ak,rz a.k), =1,2,..., approaching the point 0 from the right. Let

S f(‘xf-—ck sinnx in fp, and f(x) ¢ elsewhera in {(— =, ®). The positive coeffi-
tlants £, and the integers n, < nr, <. satisfy -a series of relations; in particular
(1) n,e, are moltiples of 4r, so that f is continnouse for x¥0 and the integral
of f over [, vanishes; {2) r,/n, = 1/k->0, which implies that f is integrable R
ovar (0,r). Let n, =4, ¢ =4, f,=(r/2,) and suppose we have defined
Aycadpfor i=21,2,,.., £—1 and conseguently f{x) for ap ,f2<xn Put

Y Riemamna [1].
*) This is implicitly contained in Hardy (1]
% Titehmarsh [t].
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a, == 4njp, p being the smallest integer such that (3) =, <1/m, .. A little
attention shows that (8,) o, 24n, |. Let n, divisible by p be so large that
{4) the integral of sln®n,x over /, exceeds «,/8, (§) the integral of felnnx
aver (a;, =) is less than 1 in abeolute value, and, finally, (6} 4E"k< 1716 kny_ .
To investigate the bebaviour of the integral, extended over (0,=}, of the pro-
duet f(x)ein nx, we break up this integral into three, extended over (0,a,,,),
{24/2, &), {m, %), and denote them by A&, By, €, We have |G| <1 (cond. (5)),
and, since sin 1, ¢ is monotonic in {0, “k-l-l) {cond. {3)}, the second mean-value
thearem shows that A, Q. In virtne of conditions (4}, (2), {3,), (6) we bagen
By oo fS=ma B8R 2 1/1Bkn, T4 Eﬂk.ﬂk =4 Ixnk. Therefore we \ha\ra
“.’Jﬂk—_— A, +8,+ C_,b-‘tlnk—l —a(l), i s b"k>1"n for k large, andgthe're-
7NN ©

suli followa, & W

2222 Since integration by parts subsists for D&njny'g.in't’égrals, bath
special and gemeral’), the argument of § 2,11 proves that{ Fourier-Denjoy
serigs, which are obtained by term-by-term differentiabighy‘ef & {F], with F

contmuous au'ffﬁﬁé‘f:‘?“’giw This reanlt cannoiNbe 1mproved as Theo-
rem 243G Y,

..
W

2.3. Formulae for parttal su!n'.\ The object of the rest
of this chapter is to establish some coaditions for the convergence
of Fourier series and of the cofjugate series. It will be con-
venient to treat these two probl'e;iné side by side. If

*

1) ta, +E(ak cos kx +b; sta kx), Z‘(a,a 8in kx — b, cos &x)

\
are E[f] and Z{f] respectively, the n-th partial sums, sx(x) = 5.(; /)

and s,,(x) = s,,(x f} these series can be written in the follo-
wing forms \

\¥;

\ sn(x)=iff(t) dt +

W

2
2
B

é

L

(cos kx f £ (8) cos Bt df + sin kx f f () sin kt df) =

a L

~ :.ia)

/2
1}:—4 # |

(‘
31

f(f)(l+2::oak(t~+x))df— 1 ff(t)D,,(t-—x)dtw
T -

=-}t—ff(r+4vm,,(:>d:,

Y) For the theory of these integral
Thiorie de Pinteprale O 1 grale we refer the reader to Saks's
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Enfx}=“-i-_{f(t)(k§ sink(t-x)) d:—ﬁwﬁﬁff(t-p x} D.(#) dt,

sin@au g costu-cos(ntbu

where D{u) = - :
2sintu 2sintu

(61.12).

The functions D, and D, are called ‘Dirichlet’s kernel’, and/™\
‘Dirichiet’s conjugate kernel’ respectively. However, instead, of
considering s, and 5, it will be slightly more convenjefih. ‘to
consider  the expressions s,(x)= Sa(%) — (. cos nx -+ b, sify }tx)f2,
s,,(x} = sn(x)——(a,, sin nx — b, cos nx)/2. Since the d!fferenees Su— 8n
avd 5, —$, tend apiformly to 0, this is completely 3ust1£:ed Puatting

A2) = Dy(a) — L cos nu _wwvﬁmhﬁﬁuhbral y.orgin
" = L

2l
D) = Doty — L sin nu = ,mS,f’“? —’-’3
AW tg
and arguing as before, we have ,}" -
T A\
3y si(x) =—f_ j flxtb) D,.(f)dt s,,(x)——— f F x40 Du)at.

I f=1, then s;(x) =1 foyin‘} 0. Since D{f) is even, Du({) odd, we
have \\

Sa{%) — f‘(.gj;ﬁ‘% f £{E+x) Doty dt - ~-('9 j Di(f) dt =

@ 17 e()
O ”~=‘—f“ fffff sin nide
‘.\'\ Ty 2 tg%
.‘.\’ :’ _
\o\t s;(x) — 1 n i“—q}t— (1 — cos nt} ¢,

where g (£) = ¢.(f) = 9.4 f) =fx+0+flx—8)-2f(x), 9.00) =
=% =3t ) =flx+ ) - flx— 1)

2.4. Dini's test. [f tkhe first of the infegrals

% (?x{t) L e(D)
W [2tg%t f?tglf
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Is finite, then & [f} converges ot x to the sum f(x). If the se-
cond integral is finite, ©{f] converges at the point x to the value
whick we shall denote by f(x),

- AL
@ Fog=— lf%g% dt.

For the proof it is sufficient to obgerve that, in virtue of 2‘3{4l\
the differences Sy{x)— F(x) and s(x) — f(x) are respeciively
Fourier sine and cosine coefficients of integrable functions{ )

Since 2tg ¢~ ¢ as £~ 0, the denominators in (1) miay be
repiaced by £ '

W,
7
3

The integrals (1) converge if p{t)=0(f*%), DO ("), >0,
as £-0; in particular if f'(x) exists and in finite> However, the
first of these integrals converges even whepy' is discontinuous
at o prodited HHATY Lo8Y = 1 [f (6 + ) 0% — O] — F (x) tends
sufficiently rapidly to O with £. The setond is divergent if only
F{x40) == f(x —~0) and, as we shall :Be;e Tater, € [f] will certainly
diverge at such points. Oy

If felipa,a > 0, E{f} and ;?,[ f] converge everywhere. It

is ersy to show that the convgigence is uniform, but this theorem
is contained in the more general resuit of § 2.71,

2.5. Theors; .sg: localizatlon. [f f vanishes in an in-
terval I =@, b), E{f] and S f] converge uniformly in any interval
I'={a 4 ¢, b~ eXipterior to ], and the sum of S[f) #s 0. If the
word ‘unifo;m}y’ is omitied, the theorem hecomes a simple corol-
lary of Theorem 2.4, since, it x < /', ,(#) and $.{¢) vanish for small ¢
and the ihtegrals 24(1) are finite. We need the following lemma.

\R501. Let [ be integrable, g bounded (| g} < A), both periodic.

:T@~tFourfer coefficients of the function y () = f (x 4 t) g (), - de-
< "\:pemimg ot the parameter x, tend uniformly o 0%).

It is sufficient to show that o8y} -0 with & )
in x. We have 1 /‘) Wi h b, unlformly

% Riemanpn [1], Labes P ;
Hobson (1], g u e, Lecons sur les sé_nes trigonométriques, 60

Y Hobeon [1}; Plessnar 1]



251} Theorems or localization, 23

4.

JIxE+ B~ 1 0ldt < [if (x4t +B~FEe 0] | g ¢+ k)| dt

+f;f<x+z>1 lg (¢ + B — g (&) dt.

It {#] <« 8, the first term on the right is less than Aw (& f)—)O
To preve that the second term tends uniformly to 0, wé put
|f'==f + i, where f, is bounded (0 < f, <B) and the iutegral
of f,-c over (—=,%) is Jesa than ¢/44. The term conslaered is,
obviensly, less than Be,(8; g) + 24 844 <, for 6‘ sufticiently
gmall, and the lemma follows. L

2.502, From ihe conditions of Tkewedubfﬁtﬁlbw Ys¥e fhat
Jx+8=01for x el [t{<e Let A(f) bo,bghal to 0 for |£|<s
ond fo 1 elsewhere. Using 2.3(3) we fn@l that sx(x) is equsl to

f( + 8 “;t nntdt-w—-—ff(x—l-t)g(t}amntdt
where g=A2tgtf In virtué of Theorem 2.501, sx(x) tends uni-
tormiy to 0 if xe/. Sigilarly, if f(x) is given by 2.4(2), and
2 el sy —Fx) tends-Biformly to 0.

2.51. The resﬁi{k of the preceding paragraph may also be
stated in a slightly\ different form. Two series &, + &, + ... and
Ty + v, + ... will;be called equiconvergent it their difference
{u, -'zjo)+(u «0,) + ... converges and hag the sum 0'), If the
differenceseonverges but not necessarily to 0, the series in gue-
stion will\be called eguiconvergent in the wider sense.
| if\two functions f, and f, are egual in an interval I, then
| & [f3"and ©1f,] are uniformly equiconvergent in any interval I
Qnkerior to I &lf) and ©[f,] are uniformly equiconvergent in I'
bt in the wider sense.
For the proof we consider the difference f=/f; — f;.
Considering, for simplicity, convergence at a point, we may
also put our results in the following form: The convergence of
&{f}, 1f] and the sam of S[f) (but not of S[f) at a point x,
depend only on the behaviour of f in an acbitraily small neigh-
bourbood of x. (‘Riemann’s principle of localization’).

————

‘) Bregn 11
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2,52. Approximate formulae for s, It is sometimes
convenient to use the approximate formulse

5o = —ff( + t)“"‘ " 4t + o (1),

(1)

sulx) — f(x) = —‘[ 248 s‘“”t dt + o{1). N
In the first of them the error temds uniformly to 0, m the
gecond it tends to O for every x, and uniformly In any mter\ al
where f is bounded. For the proof of the firat resuli we observe
that the difference of the integral on the right and {tha integral
defining s, is the Fourier coefficient of the funetion ¢ Pix+gty
where g=1/f—tetgd ! is bounded in {—r, 2% In the second
case wevenbuRtibrAEY PEENB: coefficients of\the function equal to
x4+ ~F0g@®Y. @
2,53, A theorem of Steinhaus%), [f at 4 point x, the deri-
vates of ¢ bounded function p(x) am’ ail finite, the series S [pf} and
p(xY &1 f) are equiconvergent at xt, Tn fact, the dlfferencP of the n-th

partial suma of these series 18 equal to mff(xn-}-t)g(!) gin nf df,
= -T

where g (£) = g.(6) =1% on + & —p(x,)}/2 sin L ¢, and tends o O,

becanss it is the Fc\m}ler coefficient of an integrable function.
Suppose ¢ (£,p= 1. The theorem shows that ‘slight’ modifica-

tions of f in MW®’ neigbourhood of x, that leave f(x,) unaltered,

have no ipflnence either upon the convergence or the sum of
\ o More generally

2581, If o (x) is periodic and satisfies the Lipschitz condition
of order 1, the series © [of] and p (x,} © [f] are uniformly equicon-
’u'vergent for all x,. Similarly & [of} and p (x) © \f] are uniformly

equiconvergent in the wider sense.

We need only prove that (&) -0 uniformly in x, where
1 (&) =90 = f(x + ) gAt). Arguing as in the proof of Theorem

' U we replace ain nf by cosnt—1 In the Ffirst integral (1), we obtain

a ppr ( ) T ™
2
n a oximate ex It ession for s ! y where the error t nds umfurmly toa Gont‘

Y Steinhaus 1L
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2.501, it remains to show, since gJf) is uniformiy bounded,
k=

(g )| << M, that [|gdi + k) — g(£)[ d¢ tends uniformly to 0

with #. Break up thig integral into two, the first exiended over

(— &/8M, :/8M). Sipce g.(f) is uniformly contivuous ouiside this

interval, the second integral tends uniformly to ©, and the firstds®
leas than 2.2M. £/8M = ¢/2, so that the whole is less than s, for.%

sufficiently small. A

2.8. Funetions of bounded variation. [f f{¥s\ of boun-
ded wariation, @ |f] converges at every point X, é'o the walue
[flx+0)+flx—0))2 If f is in addition coﬂt{}uous at every
point of an interval = {a, 8), S[f] Is uniforplreoibergdar gh.
This theorem, due essentially to Dirichlet,,:i}:the first, chronelo-
gically, in the theory of Fourier series )Nt proof is elementary
and vses only the results of § 2.213.:We‘may suppose that at any
point of simple discontinuity we haye f (x)}=[f (x+0)+f (x—0)]/2 3},
80 that the first part of the thegrem asseris that € [f] converges
everywhere to f(x). From 2.3{4) we have

=in 2tg%t

where 7 will be defiped in a moment. Since |sin #t| <nt < 2ntgdt,
we see that ]}if.il\&ax?:p,‘{t); (0 £ < Vn) and so tends to 0.
For fixed ‘r;,,@:is the Fourier coefficient of a function of bounded
variation and hence is (0 (1/#) = 0 (1). By the second mean-value

theoren}\\ -

Tim =
0 siw—r@ =L 4[| 2 iantar = P4 QR
Pised
&> )

ol

@Y Q=tetg 23"1' }chx(t) sinal df, wn <y <7
RS n R

\ 1:,!’!!
%ince v.(¢) is continuous for £ =0, and 2.{0)=0, the total variation

Yy Dirichlet himself considered only fumctions having a finite pumber
of maxima and minima, and inr partienlar monotonic functions. BSince, ho-
wever, functiona of bounded variation are differences of such functions, it is
natural to aseociste Dirichlet's name with this theorem, which is only more
general in appearance.

*y The set of points where a mounotonic function, and sc a fusetion of
bounded varlation, is discontinwone, is al most epumerable.
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of the function egnal to ¢t} in (x/m, %) and to 0 elsowhere, is
less than s, if v is sufficiently small ¥). 1n virtue of Theorem 2.213,
the second factor on the right in (2) is less than ¢/n in absolute
value, whence | Q! < efz, Therefore Lsx)—f () <o (Dtefzroil) <s
for > 1, 1. €. Sa{£} ~ f(X). . ‘

If f is continvons in /, then, for x el o) is uniformly
smalt for small ¢ and hence P-0 uniformly. For fixed . Lbes
total variation of the function 9.(t)/2tg4¢ over (%, ™ is I}lnl- :
formly bounded ), and so again R-0 uniformiy, If x</, .,tq::-ﬁ 8,
the total variation of f(x-+1?), and hence that of ogx(f)‘. in a
small intervall will be small %), and this gives as before that
1Q1<¢/r for v small but fixed. This completes the:proof ).

|

2.601. A sequence of functions f»(x) convergent to f(x) in
a neighhourhondinetty edun x, is said to comwerge unifarmly af
the point X, if, for any e >0, there exists 895 (s) and a p=p (¢
such that |f () — fa(x) | <= for | x — xp <08, 7> p.

If f is of bounded wvariation, SIfY converges uniformly at
every point x, where f is continuous. In fact, repeating the argu-
ment of § 26 it is easy to see dhat, if |x — X, | is small enough,
the expression | P| 4 | Q|-+ | R} 15 uniformly small.

261, Young’s théorem. If f is of bounded wvariation,

@ necessary and suf%?nl condition for the convergence of {f] at
a point x Is the existence of the integral

- DT T [_z_“ﬁ&d]
1)) f‘(f{“ - ;}/2tg%t L“_‘E n;[ztgh £l

2 8
3" The total varlation ol ¢{f) In an interval a < f < nf, 0 < o< !, tends
t6°0'4t o’ 0, for otberwise there would exist a sequnence of non-overlapping
{ Miztervals (o, «) tending to 0, o which the total variation of ¢ would exceed
4 $2>0, and 80 ¢ wonld not be of bourded variation.

) This tollows e. g. from the obvions fact that if V, M; denote reapee-
tively the total variatlon of g and Max|g;), the total variation of g g:

im M VoM V.

'} The tota! variation is eontinuous wherever the function is contl-
naoue,

) The decomposition of s§ — / into three parts P, Q, R wae not necessary,
gince it was not difficult to prove that P4 Q is small for small v (seo the

uaudl proof of Dirichlet's theorem in texthooks). However, the argument of
the text can be applied to some other theorsms.



[2.621] Fuanctions of hounded varlstion. *

whick represents then the sum of €(f1Y. In virtue of Theorem 2.63
it is sufficient to consider only the points of continuity of J. Let
f(x, k) denote the value of the integral (1) with the lower limit %
instsad of 0. Using the formula 2.3(4) we see that %) — F (x, =/n)
may he represented as the sum of three terms. Two of them are
aualagous to Q, R from the preceding section, with ¢.(¢) sin,fﬂt
repiaced by $.(f) cos nf. The same proof as before shows the
they tend to 0. The absolute value of the third is less then,

1 s 1 — cos nt n? o | O

T of| i 2tgds dt{?ﬂta[wx(t)ztdt . Oﬂ)

It follows that sx(x) — F(x,=/n) > 0. In orderito’ complete the
proot it is enough to show that f(x‘,_ﬂlma,(,;gpg@mrqrgsoggﬂm,
if #/(n 4 1) <h <rz/n. But|f(x, h) — F(x, AV [2fn — nf(n + 1)}

sotgd o Max |00 [(0<t < m/imy =0 (1;{); o (1)

2.82. Corollaries. Let f be of \Bbunded variation in an in-
terval I = (a, b). Then (i) ©|[f] convkrges to [f (x+0)+flx—0]2
at any point interior to I, If, besides that, f is continuous in 1, &[f]
converges uniformly in every in?}.‘wal (a4+86— &), (i) a necessary
and sufficient condition for the convergence of €[f] at a point x
interior to |, , IS the existencenof the integral 2.81(1), which represents
the sum of €[ , O

This follows im\hdiately from Theorems 2.6, 2.61 and 2.51.
Propasition (i) is.k:nown as ‘Jordan's test'.

AS
2.621. JAntegrated Fourler serles. Lef F be the indefinite
integral offand let the first serles in 2.3(1) be E[f]. Then we
have, fqr\ - o0 < x < oo,

WS Fx) = % +C+ ‘i (a, sin nx — b, cos nx)/n,

‘i Serles on the right being uniformly convergent ?). For the proot
it is sufficient to observe that the series on the right, without ita
linear term, is the Fourier series of the function F — a,x/2, which
Is continuous and of bounded variation. If follows also that for
overy o, B we have

—_—

B Young (2.
'} Lebesgue, Legons, 102,
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8 - . B

/ fdx= [M +Z[w} i, e. Fourier series may be

: 2 r=1 n =

-3 o

integrated term by term over any interval {(«, B). From (1) we have:
If the first series in 2.3(1) is a € |f), the series b j1 + b2+ ..

converges. This may be false for the series a,/1 + a,/2 4 ... (Bee
Chapter V).

~ e &N
2,622. If f is of bounded variation, the partial sums of = 1
are nniformly bounded. We postpone the prootf till § 8.23. ()

'\
2,63, Conjugate series at points of discontinuity.
We have seen that simple discontinuites are, in .p‘ri'r’l‘ciple, noe
obstacles for the convergence of &[f] For the donjugate series
the situation is different: If f(x +0) — f (x — Q)& 1> 0, then S|f]
divergesvat dbrgulibiany org.ln O
Thig is contained in the following, mére precise, result ?).

2631 If £ (x +0) — f{x - 0) = bthen Su(x)/log 1> — 5.
Since f{x+ &) —f(x — =1 He¥f), « () > 0, we may write

Y I s S U
(0 S0 = - ujof’m.t.)’dr ; f < (&) Dt dt.

To find the fiest of the iniégrals on the right, let us denote them
by fy, fx and consider jlfga\function Fit) =(x—$)/2 (0<t<2m), Heore
L= {+0)— f(—=H8(f) = — 1, 5:{0)=—1—1/2 —...—1/(n—1)—1,;2n=
= — log 7+ 0 (1). Shbstituting this in (1) we find that l,=log n+0 (1}
= log n. Now'we will show that I, = o (log ). We break up this
integral iptowtwo, the first of which is extended over (0, 3), where
& is so smbll that le ()| <#/2 for 0< ¢t <5 Sinee D)0, the
first ‘t?\mi ig less than 7 [/2. The second term is buunded, and
Bmh;ss than 7 /-2 in absclute value for n > n, It tollows that

L ARF<ql (n>n), i e. I =0(l) =0 (log n). This completes the
\ Sproof. .

- Ttiis ‘tpeorem gives us a means of determining the simple
disconlinuities of functions from their Fourier series.

. 2.832. Corollaries. (i) If the Fourier coefficients of a fun-
ction f are o(1/n), f cannot possess simple discontinuities, In

" Priogsheim [1].
) Lukies {i].



[2.702] Lebesgue’s test. a9

fact, for such functions sy(x) = o {log #) uniformly in x (§§ 1.72,
1,74). In particular, if the Fourier cogfficients of a fanction f of
bounded wariation are o(1/n), f is continuous,

(i) If f is continuous at a point x, then s.(x) = o(log »).
If f is continuous in an interval (o, §), then s.(x) = o(log n), uni-
formly in every interval (a+ 4, & — §),

27. Lebesgue’s test. Let ¢ () =vd), 1(=¢ ()2 tg %f
N = T, R
We begin by proving the foliowing lemma, O

N 3
2 Y

2.701. For every x, = ?sf,(x} — fixy| is less t}mrz A\

t i 1)
=’1}/|°’°() cp( T g A f"*’”ﬂmt-an{mmmw%m,
T
where A Is an absolute constant, The Iast\&erm on the right tends
to O uniformly in any interval where f‘zs bounded. Applying the
device of § 2.21, we see that =« [s,,(x) — f (x)] is equal to

T ™Y
f /(t) sin nf dt — f;(t—f—n) sin ntdt f{; (&) — 2 (£ 4+ 7)) sin nt dt 4
- A U

+ fx (¢) sin nt %l f 5 (£) sin nt dt + f 2 (£) sin nt dt.

Let us denot& the integrals on the right by [, 1, /;, I, respe-
ctively. The suim) |! |+ |4,] is less than the third term in (1). We
may assume tiat |y (D) sinnt} < |9 ()| < |f(x+ O+ [f(x—8] 4
+12f(x)]\fer £ e (x — %, %) and, since an indefinite integral is a
continu‘dus function, we see that /,— 0. Finally, |/,| is less than

~ ]‘F(t) ‘P(H"”'d;q— ()
f 2tgd(t+ % ﬁq’ |

The difference in square brackets is equal to the expression
sin ¢ w/sin £ ¢ gin § (£ m) < Aw/tt.

This completes the proof.

2,702. Let @ ()= P(h) be the integral of | g.(f)| over (0, A).
Lebesgue’s test may be formulated as follows: &[f] converges
to the walue f (x) at every point x at which

1

2tg1t 2tg‘ (t-{-—r)
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0 dy=op, [12O-eCTDIY,
bl

as- 0. Using Lemma 2.701, it remains to show that the sesond
term in 2.701(1) is o (1). Integrating by parts, we find for" it the

value A7 {{& (&) t-“}: +2 f D)1 dey =0 (1), since () =0 O
" \
(§ 1.71)- ,'\“’\

2.703. An important discovery of Lebesgue is thgt;t}:e first
condition in 2.702(1) js satisfied almost everywhere,~Tlie result
may be stated in the following form, AN

& ,w'\‘

LEthJ\E,Q[B__r H‘[J h);)l(ﬁacrsi; (t))g—l L(x)|dt, Then, :for’aimost every x,
we have Fik) = 0 (k) as k- + 0. This propqs}tion represents a ge-
neralization of the well-known theorem onthe differentiability of an
integral, to which it reduces if we omitvthe sign of absolute valus
in the definition of F, Les us denote'by £, where « is rational,

N b
the set of x for which the relap‘fqﬁ% flf(x-H)— ajdi—|f{x)—al
N o

doee not hold. In virtue of “the theorem just mentionned, any £,
is of mesure 0, ang so the. sum £ of all £, {s of mesure 0. We
will prove that Fl)

o\’:.é (7)) for x¢E.  Suppose that ¢>0 is
given and let 8 be & rational number such that [ f (x) —B| < ¢/2,
In the inequality € ) '

\ X % A
BB < [1f 0 8dt+ [ 1p— 0o

."\’
where\&bf simplicity, % > 0, the raiic of the

A first inlegral on the
rightito % tends to 1F(x) — B< e, Hence,

h for small 4, we have
fxﬂ:} SERR2+chf2 =54, and, ¢ being arbitrary, the result follows.
\ 3

271, The Dini-Lipschitz test, If 1 is continuous and its
modulus of continuity satisfies ine condifio,

2 " w(d)log1/6-0, as 350
then S [f] converges uniformiy. This tollo S a2 ’

w8 from Lemma 2.701. 8i
L ()¢ (t43) | < | fet-) =Sty |+ | fle—t)—f (xf]f—ﬁ) | < 2u:l(1:i;

1} The Yimit of 3
§ 220), apper limit of integration » may be replaced by any fixed 270
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the first term in 2.701(1) is < 20 (q) log =/~ 0. Similarly, since
g (£) - ¢ uniformly in x, the remaining terms in 2.701(1) tend uni-
formiy to & (§ 1.71).

The result holds in particular if f<¢ Lip « (« > 0).

in virtue of the theorems on localization, we concinde that
If £ Is rontinuous in an inferval [ = (a, b) and if the modulus of
continuity of f in this interval is o (log 1/, &|f] converges upi-
formiy in every inferval (a +¢, 6 —¢). This test is known asdh
Dini-Lipschitz test and js primarily a condition for umform
convergence. We shall see in Chapter VIII that the condition
fle, + Ry — f(x,) =0 (log1/]2])~" does not ensure {he conver-

Ny
77%a

pgenze of E[f] at x,. A\

2,72. In the preceding section we proved that, if in an in-
terval {a, £} the function [ satisfies a Llpscmbzdeo‘ndllbﬂ-aryfo@ﬁk
tive order, then [f] and S[f] converge, Juniformly in every
interval (a4 ¢ & — ¢). We will now prm@m slightly more precise
resait, which completes that established in 8§24

if f(xYecLipea, a>>0, in an mremal (2, &), and if, moreover,
f(b+f)—f(b)]<.4t“, |f(a)—~jf(a—-t)|<At“ 0 <t <k, where
A is a constant, then & {f] and. w{ f1 converge uniformly in (a, b} '),
There e‘nsts a constant B>~0 such that |f{x4 £} —F{x)] < Bt*,

fonly alx b |t §k and so, in the equation
$36x) — £ (%) = {]M(j +f}}f(x+t)—f(x)]D WO dt =P+ G,

where (¢ < 3 & f& the integrand of P does not exceed B|£)*~ in
abgolute val\ue Hence, taking o small enough, we have |P|<¢/2,
unifor ‘}y 4n (a, ). Since Q is the Fourier coefficient of the fun:
ction\ {x 4-£) — f(x)] g(6), where g (F)=4cigd ¥ for a < [F]<x,
gAL)=0 for |¢|< s, we see, by Theorem 2.501, that Q0 uniformly
“agn - oo, 50 that | Q| <¢/2, |P4+Q| <, for n>n, a<x< b In
the same way we prove the uniform convergence of sn(x) f(x)
Let o (8) denote the modulus of continuity of f in the inter-

val (g, &), If w(2)/¢ ie integrable in a neighbourhood of & = (,
and if |f (b4+8)— ()| <o (), 1f(@—fla—t) <Aud), 0=t <h,
then € [f] and £ [f] converge uniformly in (g, 5). The proof re-

Y Hobson, Theory of functions, 2, 585.
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mains the same as above. The result holds, in particular, if
0 (B=000g 1/5) 7% >0, For =0 the argument fails, and,
as we shall see later, the theorem itself is false.

9.73. As we shall see in Chapter VIII, the partial sums of
& [f] may be unbounded almost everywhere. However

If at 4 point x, we have D)= o(k), then s,(x)=o(log 1}, fmd
if Wdhy=0(h), then 5,(x) = ¢{log M ). We know that P{%)= o(h),
¥ (h) = o{h) aimost everywhere. From 2.3(4) we see that thesex'
pression 7! sn{x) — f (x)} does not exceed N

\,
1ir

ﬂf]cp(t)idt-ff!—l}P(r)ﬁdt—wntb(ifrz)—l—[@(r}z”‘] +~j DYe) £ dt.

The first two terms on the right give @ (r)fmas 0(1) = o({log 1),
the third, in vir ue ofl lgtégm @ (t) = o(t))is o (log ) (§ 1.71).
We procedd s NP rly with an(xﬂ o into account that
| Dah < 1 tor @< £ < Un, and 1D,,(t)i< it i Lt

If f is continuons in {(a, &), then s,‘(x)jlog n and sAx)fiog n tend
uniformly to 0 for xe(a+3 6% (o>0) The proof is still

simpler since in the inequalitls for |s,] and |sy— f| no inte-
gration by parts is necessafy

2.74. Lebeague’s {riterion has an analogue for conjugate
series. Let ¥.(k) be the integral of | b,4f) | over (0, &) and let 7 (x, &)
have the same meaning as in § 281. Then, the conditions

1) ‘Fx(\éz)%b(h), fw—”ﬂ dt >0 (7 0)
~N S "i

mwo!'z%zhe relation s;(x) ffx,n/n) >0, In other words, under the
above conditions, © {f] converges at a point x if and only if the
Atitegral 2.61(1) exists ). The conditions {1) will certainly be sa-
shsﬁed if f satisties the Dini-Lipschitz condition in an interval

containg x. The prool we leave to the reader.
If felipo, then E1f] converges eniformly, Thig follows from

the fact that s,(x)— f{x, =/n) tends uniformly to 0 and that the
integral f(x, %) converges uniformiy.

Y Hardy (2 Young {3l
W wiln-t1) <R </, then | F(x, M) Flx, min} | s(n -+ W (rfm)imd >0,
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2.8. de la Vallée Poussin’s test. /f the function y () =

£
Yo = % f vxll) du is of bounded wariation In an interval to the
]

right of t =0, and if y(§y-0 as £t =0, then & [f] converges at x
to the wvalue f (X))

The convergence of €[f] at x to f(x) is the same thing ag
the convergence of & [¢] at the point £ =0 to the value O. Now
o { = £y'(#) + ¥ (£) and, sines the derivative of a function of boub-
ded variation is integrable, g is the sum of two functions, the
first of which satisfies Dini’s condition at ¢ = 0 and the §econd is
of bounded variation. 2\

W

2.81. Young’s test?). S{f] converges gt Elfr;?ﬁ’liﬁﬁ'ﬁyt%l@f‘-‘in
valwe f(x), provided that {1} o)+ 0 as [N, (2) the function
0 ()= tg.{f) is of bounded variation in an ,ff{i’&rbal to the right of
t =0, and (3) the total variation v (k) of/dever (0, 4) is < Ak for
small k, where A is a constant. “

Consider the decomposition Aqf’ithe integral 2.52(1) defining
5, —f into three integrala P, Q'R extended over the intervals
{0, &/n), (&/n, ), (1, ), where kis large but fixed, and 7 is defined
by the condition that 8 is ofrbounded variation in (0, ¥). We have
(P! nPkiny—~ 0., Bimilarly R~+0. Q is the sine coefficient of
a fonction g (£) = gt {{f«t’)ounded variation, and the theorem will
have been proved ywhen we have shown that the total variation
of ¢ over (0, =) isyleds than e (s arbitrary > 0), if only % is made
large enough \Sinee ¢ (k/n) = o{n), ¢ (1) = OQ1), £(©) = 0 outside
(kn, =), it is’émough to prove the same thing for the variation
of ¢ (7) ;\Q(j)/t’ over the interior of (%/n, v).

Lat \(a! 5y = (&/myn), 2 ()= -2, B(t) =0e{f), a{f)=the total
varigtion of « over (2,1}, v{f) = the total variation of B over (g, ),
Andvlet o= f <f <., <t,=2> be any subdivision of (s,5). If
wd add the obvious inequalities [a (F)B{E) — ¢« F) B (L))} <
<let)| [BE) =Bt +HIBl) ] ta @) —alli) | < [a ()|l (t) —
— ot )]+ B )| (a0t — (e £=1,2,...,m, we find that
the total variation of 2 over (a, #) dces not exceed

Y dela Vallée Poussin [1].
Y Young [4; Hardy and Littleweod [IL
") The argument ig similar to that used in § 2.6.
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-

b ™
j | (#) ] d@(t)+fi B()| du(f) = ?#3 dv () 4 2_/;B{t)}t—'3 dr,
a 2 #in xin
Since {3(8) = |0{f) — 80| L v (f) <L A, the last integral is less
than 24 njk. An integration by parts shows the preceding inie-
gral to be less than {2 (f)n* — v (Bfn) (&/n)7] + 2A njk. Altogether
the two integrals yield less than O (1) 44 An/k <{sn, if & is jarge
eaough. )

A\

2,.82. The following theorem, in which F(x, %) has the same

meaning as in § 2.61, is an oxtension to the case ofidonjugate
series of the results proved in §§ 2.8, 2.81. A

The difference si{x)—f{x, wjn) tends to O’Ma\s # oo, if one
of the followthpasWF Yondlions is satisfied: 4N
H AN

() the fanction v (t) =% J ) @u 8" of bounded wvariation

in an interval fo the right of t =10,/

() $<(1) >0 with t, t QS 55 of bounded wvariation in an
interval to the right of t=0%and the fotal wariation of t(£)
over (0, k) is O (k). )

__ To prove the first\part of the theorem we observe that

S[f] at the point x ik the same thing as } &[4} at ¢ =0. Now

¢ Ef) = $1(2) + $(8), \1’\;(3) =ty (), &6 =7 () and so we bave

253 ) — (5 RIM) = 54005 $) — § (0, mfn) = {5(05 $,) — $,(0; %/m)] +
(505 ) 2900, 7).

Sined G0, 5/m)~F, ©), 0950} (§24), 5:(0; 4)—5:(0,x/)0
(8§ 2.6%;'“;6 obtain that ss{x)—f(x,#/n) >0 and this gives the
first’;:part of the theorem.

‘\ The proof of the second part is much the same as that of
\ Theorem 2.81.

283. The Hardy-Littlewood test. This test is interes-

ting l?ecause It takes into account not only the behaviour of the
function, bunt alsc that of the Fourier coefficients.

Y Young 12, 15
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S f| converges at the point x to the value f(x), If the follow-
ing two conditions are satisfied (i) f(x+h)—f(x)=0 (log1/Ik})-*,
(i) the coefficients of & [f] are O(n %), 8> 01,

Since instead of € [f] we may consider € [], let us assume
that x =0, f(0)=0, f(x)=Ff(—x), |a|<nd 0<E<L Itis
algs ccavenient to suppose that g, = 03) Let r=158/2. We have

2 sin nt
0 t df = P R .
530) = ff()21 Y f+_[1+rf, TR o
Since 7 is continuous at the point 0, P> 0 as n- oo, If. e{H) =
=Max {if{#) log Yu} for 0 <& < {, then RS N\

Q<5 ¢n = (2 fbglibrgry orgin

and it remains ooly to show that 2 -0 Us.l}:g the theorem (which
will be established in Chapter Iv) that F&)ner series may be inte-
grated term by term after having beeq multiplied by an arbitrary
function of bounded wvariation, wq ’}i’ave

R— S k2 smrxtcosktdt
L 2glt

Replacing the pro,du}sts cos kf sinnt by differences of sines,
and applying the sec ri(iniean-value theorem to the factor 1 etply,
we gee that the cosfficient of ax, &5, does not exceed 4w fmik—n|
in absolate value “and 50

'R »<0Q’)\+ 2|k_

where '}}enotes that the term % = # is omitted. Now

n—1 wo
=o()+ 2+ 2 =0o(D+R+R,
| k=1 R=al

I | B i
~ < —b4- a7 4 3 = O(n O 2] =a{l
\4& Zk (k) k--n:;m_ -=0(:")+0(:" Tlog mW=0(1)

Y

R2<;;r -3 2 2 f--wO(n 2Iogn)+0(?ld§) o(1},
k.‘n-i-lk ,r: r=tnf1d

and this completes the proof. The same argument shows that
Under the conditions of the above theorem, si(x) ~ f (x, =/n)~ 0,

" Hardy and Littlewood [2], {3l
*} We can secure this by adding —44,(1 —cos x) to E[f].
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2,84, Relations between tests '), We shall consider only
tests for the convergence of Fourier series.

Dini's and Jordan’s tests are not comparable?). Let f{x),
&{x) be even and let f(x) = t/log {x{2x), g{x)=x*sinl/x (0 <a<1)
for 0<< x < ®. At the peint 0, f satisfies Jordan’s condition but
not Din¥s, and econversely g satisfies Dini's condition but not
Jordan’s.

de la Vallée Poussin's test includes both Dinf's and Jordafz’s.
Let & (f) be the integral of ¢ over (0,7), and let 7 (£) = GOV,
If ¢ is positive and non-decreasing, so is 3. 1f ¢ is of boundbd
variation, i. &. if ¢ = ¢; —p,, where ¢, ¢, are posmve de 100~
decreasing, then ¥y =y, — v, is also of bounded vamatmn This
proves the second part of the theorem. To pmv\s\‘the tirst, let

t) be th tegral of uy'e over {0, ). Asgimple calculation
l‘:}fa)ws :{h\{l\{edbl:l agﬁbrar ?g(#l , 9. R p

——f«p(u)du u(t)*-»—faf(v)du,

and if ¢ is of bounded variation Iha same ig true for the ex-
pression on the left. ™3

de la Vallée Poussin's and, Young's tests are not comparable.
Let g(x) be even, g (x) ={LW?x* for =/(r+-1)<x < »fn, £=1,2,...
The total variation of ;ggl‘x) over {§, =/) is exactly of order £
it follows that, f 0 %a<"1, x=0, g satisfies Dini’s condition but
not Young’s. Thus, Young's condition does nof include Dini’s,
and, 3 f()['ti()l‘l, de la Vallée Poussin’s.

Let A{x) b&\a\fen and equal to (—1)"3, in the intervat (27!, £2-7),
=012, a5where 18,>8,>..,-0. A atmple calculatmn shows

that the t\tal variation of f/(x)= x‘*‘fﬁ. (1) df over (=2~"1, = 2-7) is

,eqlla\l to [Baf/2 + Bagt/2% — Bryaf28 4 Brss/2t —~ ] > Be/2, so that, if
\élq-gz «=o0, k{x) does not satisty de ia Vallée Poussin’s
. condltlon at the point x=0. From the graph of the curve
¥Y-=0(x) = xiz (x} we deduce that, if = 2—n—1 < X < =27 the total

" Hardy [8]. See also Gergen [1], Pollacd [11.

t We say that f satisfies Jordan's condition at a poi i
nt if fix f
bounded variation in 1 neighbourheod of Xy (§ 2.62), ? T it r o
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variation of B over (0, x) is less than o(x)+2x B, 2~ 14 fup; 2~ 14
+ ] = 0() + B = 2= 0(x), and so Young’s condition is satistied.

We state without proof the following result: de la Vallée
Poussin's and Young's tests are both included in Lebesgue's festl),
which, consequently, turns out to be the most powerful, although
not always the most convenient, of all the tests discussed in this
sectioz. O

2.85. Poissen’s formula. Let g(x) be a function defiped
for — v <7 x < oo, tending to 0 as x -+ oo, and integrabie\in any
finite interval. Suppose, moreover, that the series ™\

RN 222
(0 Sele+x) =0, - N
k== www_dbrau’libl'ary.org.in
whose symmetric partial sums we denote by \(i(x), converges nni-
formiy ?) for 0 < x < 1. The sum G (x){i® of period 1, and its
Fourier coefficients c, with respect tonthe system {exp 2nivx} are
1 Nk W fou _
(2} iim a/- G, e "™ dx =:\E¢ rg &gr”“‘" dx =, [= £ (x)e T dx.

Nopen

Hence, supposing that, at 'the point x =0, G satisfies one

of the conditions ensuring the convergence of € [G] to the value
G (0), we obtain imme,di}a}ely the Poisson formula

+oe\\ fo= oo .
@) B ew=2X [gwerax.

AS

This formula is true if, for example, ¢ is of bounded varia-
tion over("¢* o, + c0), 28 (x) = g (x+0)+ g(x—0), and if the
series (f)Jeonverges at a point. In fact, let 7; be the total varia-
tion ofig (x) over (%, k+1). Since the oscillation of g (x + £} in
ﬁl; 11;)‘. deoes not exceed T3, and .. 4 v— + ¥+ 7 + ... =V < oo, the
eries in (1) converges uniformly. G (x) is of bounded variation
Since its total variation over (0, 1) does not exceed V. Moreaver,

it is easy to see that 2G (X)=C{x+ 0+ G(x—0)
) An additional remark on the Fourier coefficients of the fun-
¢tion G (x) in (1) will be useful later. It may happen that Ga(x)

) Hardy [3) Hobeon, Theory of functions, 2, 533.
) This condition might be relaxed.
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itself does not tend to any Hmit, but that there exists a sequance
of constants K, such that the sequence Hi(x)= (ffx) — K{; does
tend, uniformly, to a limit # (x). Changing, if necessary, fne va-
lnes of K, we may suppose that the integral of # over (0,1)
vanishes, so that, if now ¢ are the complex Fourier coetficients
of H, we have ¢, = 0. Taking into account that the infegral of
Kz exp (— 2zive) over (0, 1) vanishes, and replacing in (2} Ox by -H”VK
we find the same formula ss before for c,. In other words, sinse

K, may be taken as the mean-value of Gn over (0, 1), we @3}’

write ¢ '\

@ lim{G,co - f [ 6t dt} e f g ) e b
g a Yo
N
where ' denotes that the term v =0 is omitted,
wEsampleadidr ?@x?lzgxn“ for x>, g(,\;)%(} elsewhere, 0<<a<li
Bere Gu(x) = x4 05+ D7 o b L il K= 00 1201 =),

Therefore, sinee (A-+1)' = —n""% 0, the numbers e, +fx_“ e

are the Fourier coefficients of the functlon

lim [ 4 (21" e GO 7)™ — (1 — )] (0 < X< 1),
2.9, l!lseellanemis }heorems and examples.

1. It w35 o\i, then f=conet. Titchmarah, Fheary of functions, 372.

o 0N
(Cousiden, [R5 +#) — f(0) ai
A
2. G\van an arbitrary sequence ¢, 0, =, >0, there exisis a eontinuous
fSuch,\Kbat la |16, 7=, for infinitely many 7. Lebesgue [!}.
II! <ty <., ande, R putf{x):zsn cosn1x+z eo8 X1
3 Let f{x)=acosbx 4 2 can *x .. -} 2" cos Flx ... 0<a<1 ab>=1.
< ‘Show that (i) felipe, where u-—lngﬂ_],flogb {ii) the Fourier coefficients
of f are O(n—2), but not ¢(r %) (ill) i ab=1, then w(d; f3=0Elog1/3). Hardy[4]
[Let »==v (k) be the largest n such that p"h <1, In ihe formula

fletm— f(x-n)._—22a gmb"hsmb"xzzdrz P+0
"=l ¥=l pe=wil

the terms of P do not exceed 24" b" 5, g0 that P = O{k“) The terms of Q

are < 2a", and 80 Q= O (%)L
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p.
4. Using Theorem 2622 and the equation 2 (a, 8in nx — b, cos nx)jn =
A

b
" B
1 ~sinp(x — ¢
=— Jf f(:‘JZ}‘ -—n—la‘r, prove Theorem 2821 and the formula
[v] "

.
= b _—

Sa=t[mitty &
n=1 Te

N ¢

5. The numbers Cem 1427 pg iy 4oy p il
are all rationa) moltiples of =2%, s,,\

{integrate the series Bin x <% sin 2x -+ ... &n odd pumber qf.,ﬁ‘mes].

G M F{x) has & derivatives, the Fourier coelfficients,.of\ f patisty the
velation [e, | < w (=/n; f(k))g’2r:*, a=0 It fm fs of bounc!g(itﬁriation, then
e, = TRy, www.dbxadlibrary . org.in

7. X f(x} vanishes in (a,#), the function f_ﬂi}‘defiued by 2.4(2) has
derivatives of any order for a <l x < b AN

8. Considering & [cos « £], prove the formulae”

- = X W

s_l:_;—?: =i + 2512]: a—(gj_-lé| on otg ar = i|: ﬁza!gl..d_sl_—lp (a:#(],i 1, ..}
8. If o () increases monotonicalf){”éd' +oas t240, 0<TF <ty SLF]

diverges to L = at the point x. &Y
[Let (Nt =y{&). Then Ny
wfn ~ win

f 7 (Y sin 2 di+o(l) = Tt,.'zﬁ(»ét) - [ [ (&) — 7 (f—f' i}] sinnfdt 4o (1) =
{ ¢ & :\'} i

a
\\ iR
O =y [x(t]sinntdf-}-o(l)].

\ ¢/ i
10. I (i) &{H->0 with £, (ii) tp'(t} is absolutely coatinuous except at
=0, (il ft?’(,t{% A, AZ>0, for small ¢2>0, then &[f| converges at r. Te-
nelii {1]; H{'g,ﬂy and Littiewood [3).

[ApETRY o va g'a tent].

“lf::z’g[f] is convergent =zt the point x, provided that (1) the jntegral
2-§.1\(1)\';exists and {2) the total variation of ty{(f} over (0,%) is O (h). See
‘Qa‘aad [1.

[The proof is analogous to that of Theorem 2,82 (il) except at one point:

&in
to eatimate P:_—fnp(.-.‘) I_); ({)dt we cannot use the faet that ¢ (f) >0, but inte-
[

gratiag by parts and applying condition (1) we find that P-»0}.



CHAPTER III.
L 1Y

Summability of Fourier series.

<

. 8.1, Toeplitz matrices. An infinite matrjy'\’*’f

wrerw dbraulibrary g @b Tots v Bomy oo
Bigy Tygy oo ypy - 8

»$2

%

N =

X
Bgy Gress 2on Ciimy, Y.
%

K\

is called a Toepliiz matrix, or T}-}(fhtrix, if the following three con-
ditions are satisfied (i) Hoa@p =10, & = 0,3, .., (ii) li?’l Ai=1,
(lll) Ne< C, f=0,1,..., Woere A;:am-i—a,-,—t—... N Ni= ! a‘,—n§ - | {1’,'11+
and C is independent @i} Given a sequence {s.}, we ‘transform’
it by the mairix ¥, i.\\cénsider the sequence 9, = dup S -+ A 5t - .01 s
provided that the(series on the right converge. If 5,5, we say
that the sequere® [s.}, or the series with pactial sams s,, is sum-
mable % to the’value s. The expressions o, are called 7-means.
If s 'a T-matrix.and if s, s, where s is finite, then c,—>$ 5.
In tactodf"Sx =5 4 ea, €2+ 0, then o, = o) 4 aff, where dy = Aa5 >
(by {ii:)). Given any =20, suppose that )e.| < ¢/2C for &= &,
MB‘W 198 < Clan| el + o + e ] Pea |} 4 Clanasrl tonsr] 4 ook
\‘v,vh‘ere the gecond sum on the right is less than C-2C = /2, and
the firet sum tends to O (by (1)), it follows that | o} | <¢/24-¢/2==¢ far #t
large, i. e. oi = 0, 6, 5,
It is useful to note that, it s =0, condition (ii) is not neces-

sary in the prool. If s, depends en a parameter and if sz §
uniformly, then o, » s alse uniformly.

B Toeplitz Hl
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3.101. Condition (iii} is a consequence of (i) if ¥ is positive
i e. if all a, are non-negative. For such matrices we can prove the
following more general result:

l_in} Sp <0 lﬂ 6, 1im 5, {Tifﬁsm

To prove e. g. the first inequality we may plainly suppose .that
lim $y =257 — co. Let 2 be any number <s. Then $; >« for £ > k,, and
80, by (i}, we have the inequality ou> 0 (1) 4 (ans, 41 +...) o = afl) +
+ #l4s + 0(1)], and therefore lim a, > 2, lims, > 5. I particu-
lar it 5, -» oz, then o, + o, o A

If % is not positive the result is not necqssarilyt_true._A mo-
ment’s consideration shows that, if lim $n=5, lim8,=s, lim Ni=C,
then lim s, and lmo, are both contalmedblaghibiysy GEg I |

[F(s+ 5 — C-i(s —:S_),'g(f-f—;‘»‘_)—l- C'%(E—.E,H}I“ fact, we may put

$a=3:+ i, where s,=£ (s+7), Tim | sl <46 —5). Then o,—a}, |-af,
where 2. > L (s +3) and lim of < C.K5—s).

3.102. Let {p,), {g.} be twd sequences of numbers, and let
Pa=py+ 4 py Qu= Gt tGH 92>0, Qn > 0o, If Sp=puigaos,
then o, — FPuiQu—3s. In factiSa, = (o5 + q,5, + ... + Gn 82}/ Qu, 50
that we have here a pgsifive 7-matrix. In particular, if ¢, =1
for n = 0,1,.., we obt,aifn: the ciassieal result of Cauchy: if s, - s,

then (sy+ 5, 4 .. + S+ 1) ~ s,

311, Cesﬁi*o“ means. Given a sequence {s,} we put, for
B2k, SaE S i 5t ot Sy, 5 — g o tsE
Similarly, et @ — 1 (1=0,1,..), 4} = Al A+ AAY L, A= ARy
+ 48 —I-,X-{-'Aﬁ"l,‘.. We shall say that the sequence {8.} is sum-
mable by ‘the k.th Cesaro mean, or summable (C, &), & = 0, 1,..,
to limit' s, it si/A% 5 as n-+oo It follows from § 3.102 that
stmmability (C, &) of a sequence invelves semmability (C, &+ 1)
}b he same limijt ). To find the numerical values of A% it is con-

) Les us defige, for every k=0,1,.., the sequance {?ﬁ:(hﬁ_l+‘,.+
+’!:_l)f(n+1), n=0,1,., A =s5_. {5,} is said to be summable by the #-th
Hilder meap, o summable (#,£), if A% s as n—+. The methods (C, £} and
(1, %) are known to be squivalent, Altbough the latter is logically simpler,
1 is Jess useful in applications and it extension to the case of & non-integral
Much lesq easy. See Hausdorff 1],
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Summability of Fourier series. ()

.31, Toeplitz matrices. An infinite matrix'.f

X
A\

wirw dbraulibrary prth doy, - Guny oo
s a1y oon Bymy oo

N/

=1 L
®

‘ gy Gaysy o ‘Iqh‘s:\-
e INY .

is called a Toepiltz matrix, or Teiiiétrlx, it the following three con-
ditions are satisfied (i) hm a.k =0, k=0,1,., (i) hm A=1,

(N C, i=0,1,..., where A(—am-lr-al,—{— . Ny _13,05 + TR
and C is independent of\{> Given a sequence {8.}, we ‘tranbform
it by the matrix %, i,6_donsider the sequence o, = &S + &u 51 + ..
provided that the \sénes on the right converge. If o,—+ 35, we say
that the sequerm@{s,,} or the series with partial sums s, is sum-
mable ¥ to the jvalue s. The expressions ¢, are called T-means.

I zga ‘T-matrix.and if §, » s, where § is finite, then o, 5 %)
In facty ‘if Sy =35+ %, £& -+ U, then g, = ap + o}, where ¢, = 4,5->§
(by Gi)).” Given any ¢ 0, suppose that |z,|<I/2C for &> kR,
SlnCElG:l{(lano ]Eo1+ +|ank.| |5k]}+([ank.+lil'sk,+l|+ )9
¢where the second sum on the right is less than C ¢/2C = /2, and
\ the first sum tends to 0 (by (i)}, it {ollows that |53 <¢/24-¢/2=:¢ forn
large, 1. e. i+ 0, 9, > 5.

It is useful to nofe that, if s =0, condition (ii) is not neces-

sary in the proof. If 5. depends on a parameter and if 5, > S
uniformly, then o, - 5 also aniformly,

Y Toeplitz i1
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3181, Condition (iii) is a consequenee of (ii) if ¥ is positive
L e if all ., are non-negative. For such matrices we can prove the
following maore peneral result:

lim s, < lim o,< lim 6, < Iim s,,.

To prove e. g. the first inequality we may plainly suppose that
lim 85 == 5> — oo, Let « be any number <s. Then s, > « for £ >> k,, and
80, by (i), we have the inequality o > o (1)+ (an L1t a= p;@i—[—
+ 2[4, 4+ 0{1)], and therefore lim s, > a, lim g, > 5. In partitu-
lar if s, - o, then s, — o, \,

If % is not positive the result is not necessarily,Jjruel A mo-
ment’s toosideration shows that, if lim s,=5, lim s,\:s, lim Ni=C,
then lim o, and lima, are both ~contslweddbiighliaryonaial
I3 s+ §)—C- 1z =40+ s+ 1 (E'—E)]\\Il; fact, we may put
Sa=3t + 37, where sy=1 (s+5), im s} = 1{s~s). Then a,=af, +al,
where o} > L (s 45} and lim of < C-3 @5 s).

3.10%,  Let {p,), {gs} be two;ébquences of numbers, and let
Fa =Py Py Qn= o t+..+ l?n;qrx =0, Qp—+ oo, if $a = Pr{Gn > 5,
then o, = PrfQn +s. In fact, gy = (@St g1+ ..+ ¢a S2){ Qn, 80
that we have here a positive 7-matrix. In particular, if g, = 1
tor n = 01,.., we obtaigr}he classical result of Cauchy: if s, - s,
then (55 + 5, 4 ... + s,,)g'\& F1)-s,

3.11. Cesare‘means. Given a sequence {s,} we put, for
R=0,1,.., sn=En%s = S0+ S At Soy e, Sh=st gt 1 sEL
Similacly, lot AN 1 (=0, 1, W An=ASF AL b A4 A= A
+ A Lo %\Azi}}_l,... We shall say that the sequence {5} is sum-
Mabie b.‘?"\f‘he #-th Cesdro mean, or summable (Ch, k=0,1,..,
to limigss, if sifAf > s as n- o0, It follows from § 3.102 that
sumiili}bility (G, k) of a sequence involves summability (Cek+1)

the same limit 4. To find the numerical values of AL it is con-

) Les us define, for every £==0,1,.., ths sequence {Iﬁ=(h§_l+---+
TN, 1 =01, = 5,0 {5,} s said to bo summible by the At
blder Mean, or summable (H, &), if it 55 as noes. The methods (C, &) and
(#, k) are known to be equivalent. Although the latter is Jogically simpler,
1t is lege useful in applications and its extension to the case of % non-integral
"eh less easy. See Hausdorff fil.
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venient to use the following proposition, which is easily proved
by means of Abel’s transformation: If A» = a, -+ a; 4+ ... + @n, then

Z, a,;x“—~(1—~x)Z;A,,x'*
provided that the series on the right iz convergent. This permite
us to restate our definitien as follows: 2N

A sequence {s.}, or a series uu+u1 .. with partial saps
S, 18 summable (C, «) to the value s if of =53/A% >3, s} de\ A%
being given by the relations

'\
o E’s,, xn (Sf’a,;x"
1 An Xt =(1— 0o, g% an e 0 R
1 é; xt=(1-—x) Zz‘u ~a —~x)°\‘ o

Ty Shis) edishifbiony @A 1 -2, ) is %0 longer a positive
integer. However it will appear scon thp\\)’nly the case a>—1
is interesting. The following relations aig‘consequences of (11

@ Ai=(n+a)___ (@A) @R
n ! .;.’j~ F(a-}-l)

2k —1,—2, ..

a+5+1 l N\ 3
3 AT =3 4% n“o @}s”“ 2AL£,

o

(B) sn=13 Avs sk\ﬂz% AL m, (6) AS= z A AR A=Al

(7 so= E si**’.‘; S Saa=sn (8 2 LAY [< oo, a<l—1,1)

)] A(, £ positive for @ > — 1, increasing for «>>0, and de-

Cf‘«‘ﬁs\g for 0> a>—1. Ha< —1, A7 is of constant sign for n
suffwwnt]y large.

\'“‘y 3.12. 'l‘jhe Gamma-funetion. In 311(2) 7 is the Euler

Gamma-function. Except in Chapter IX, the reader is not expected
to be acquainted with the theory of this function, and may take
the relation 3.11(2) just as a definition (Gauss’s definition) of 7. It
remains, then, only to show that lim Aj/n®

] exists and is diffe-
rent from 0. For this purpose we write

N Bee (2.
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log 45 = 3 log (1 + ;) =2 {5+ Ok =a(log n +CeH(C1),

where ' is Euler's constant (§ 1.74), «,, Y0, and ' is the
sum of all the terms O (k. This completes the proof,

3id. [f oy, a>—1, A>0, then o5 We obtain,

from 8.11(4) that oo™ = ( > AT A ) AT This is a pogitive
T-mairix, and so the result follows. Also, more generafl‘y, “the
limits of indetermination of o*** are contained betw&en those

of o
if U+ + .. Is summable (C,a), and rg;;ﬁblmlm Jhen

=0y We twve w4l = (54T AR )ar 6 311,

P=—a—2) Suppose, as we may, thaf\ok ~+0. We need only
show thai conditions (i} and (iii) of Toephtz are satisfied (§ 3.1).
The former is obvionaly satisfied, )\ As regards the latter, let us

Bupp%e first == 0. Then, Ak hemg non-decreasing, we have

Ny V|Ak°‘ l=0q). 1t < o< 0, we obtain from 3.11(3)

-—J

that N, = 2, sinee A7 im?s negative for &> 0,
It is often useful’to consider the difference

1) S oL = (&, + 2uy + ... + ntx)j(n + 1),

If it ten’ﬂs to 0, in particular if #,=o(l/n), the (C,1) sum-
mabihtyx{f un-i»al—l- .. involves the convergence of this series.

3 14. Abel's method of summation. The series u,+u,+...
maald to be summable by Abel’s method (some say Poisson's),
’Summable A, to sum s, if u+a, x+u,%* 4 .. is convergent
for |} <1, and

(1) limfuk xt = ljm (1—x)25ax*—5a

x5 k=0 11
®here x tends to 1 along the real axis. .
If w4 u, + .. is summable (C, %), a > —1, ta s, then (1) holds
s X1 along any path L lying between two chords of the unit
circle which pass through x = 1. Such paths L will be spoken of
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as not touching the circle. They are characterized by inequa-
tittes |1 — x| {1 — | x|} < censt, x ¢ L.

To avoid the difficulty that the variable x in (1) changes
continuously, we consider an arbitrary sequence of poinis Xa
lying on £ and tending to 1. Since

S b= - x) N st = (0 — x4 3 ok A 15, 2N
k=0 K=l A=

we need only show that the matrix ¥ with am = Ar (1 — x,) 5 %z
is & T-matrix. If x, » 1 along the real axis, the matrix is¢positive,
so that the limits of indelermination by the method 'A":af"e conta-
ined hetween those by the method (C, o). \ 3

3.2. As we shall see in Chapter VIII, ther,e‘éx\tst continuous
functions, with,Egpsier series divergent at some)\points. It is there-
fore natural te consider the summability of Fourier series. Al-
though some older' results, e. g. those‘p{ Poisson, in the theory
of trigonometrical series can now bé\retognized as applications
of methods of summability, the first ‘déliberate step in this direc-
tion was made by Fejér {1902). .;'fha results proved in this cha-
pter, together with the exampleés of Chapter VI, show that, if
we do not restrict ourselveg®to functions with rather special
differential properlies, it j§'vather the summability than the ordinary
convergence which i'.g'@mportaut in the theory of representaticn
of functions by me{nsf' of their Fourier series.

3.201. Let ,s}(x} be the n-th partial sum of &{ I
‘W =
(1) \“f )~ La,+ 2_1(51;; cos nx + b, sia nx),

and lat\éi—,}x) = u.{x; 1) be the first arithmetic means of {sn}.
_\Using the formulae 2.3(2), we see that '

M@=%ffw+n&mﬁ,

W) —f ) =2 [ 9 (t) Kutt) at,

where, as usual, ¢ (£} = ¢ (f) =
Kn= Dy D+ o+ Dn)f(n +13
the denominator of Di{t) by
of sines by differences

FOEEH+f(x~t)—2f(x), and
. Multiplying the numerator and

25in 4 ¢, and replacing the products
of cosines, we find that
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"o . 1 . 142
O sk -FIELE Rty

It is customary, in general, in the theory of Fourier series to ecall
the Toeplitz means of the series } + cos? 4 cos 2¢ -+ .. kernels,
The expression K,({) is called ‘Fejér’s kernel’ and has the follo-
wing properties: -

(@) Kl = 0, (i) - [Ku(tydt =1, (iii) Mu(3)>0 as 1 ooq Loy
ﬁ_,l‘ 2% o

every ¢ = (, where M(8) = Max | Ky(£)| = Max Ki(f) for ’6":"‘{2 <,
n=001, ... e\
Condition (ii)} follows from the analogous pr?p‘erty of Dy,
and (iti) from the inequality M,(5) < 1/26rwidbisndibiahy oFein
nels with such properties are ealled posftgp{\,kernels. Kernels

satisfying, besides (ii), (iii), the conditi’on’:(}) fff(a(_f) cdE < C owill
.n. —

be called ‘guasi-positive’. Conditi,o‘h:'{i') follows from (i} if (i)

is satisfied, A

NN
R Q)

3.21. Fejér’s theorem ). If the limits f(x+0) exist, S[f]
is summable (C,1) at the paint x to the valne § [f(x+0)+f(x—0)]
In particular, if f is toutinnous at x, ©if] is summable there fo
the value f(x). If F is continuous at every point of an interval
I=(aq,b)2), (4] .\z‘s'. uniformly summable in I,

The prog (will be based only on tbe properties (i), (ii), (iii)
of K., We may assume that 2 f (x) =f(x+0)+f(x—0), so that
|98} < e 20« £ < 2 =(c). From 3.201(2) we see that | 0,(x) —f (%)
does ﬂoi;.:exceed :

:'\: '1 b 8 T = M (5) =
W7 e 1 Kmat=1. (f+{)~<iff<nd‘+‘"—f|‘”d"
o T N i T O
Let us denote the last two terms by P, Q. We have P=¢/2

(eond. (i1}, Q0 (cond. (iii)), so that P+ Q@ <¢ for > g = (<),
&1d, & being arbitrary, the first part of the theorem follows.

Y Fejér 1],
® We mean by this that 7 Is continnous also at the points a, 8.
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If f iz continnous at every point of I, we can find a 3 such
that |¢{f)] <s for 0 < ¢ < 8, x e/, and so (1) holds for any x e/,
The integral in @ does not exceed

[l A+ f =)+ 207 ()t ~ Jif@ldt42sif e

Hence Q-0 uniformly in 7, so that P+Q<s for £, x <l N

1f, in partieular, (o, &) coincides with (0, 27}, 3.(%} converges
uniformly to f{x). K

7'\
3.211. The theorem would be true even if Ku.were only
quasi-positive, In faet, XK. in 3.21(1) shouid then'bpfreﬁ;laced by
1 Ka). We should have P=Ce/2, Q-0, i. e P{Q@Cs for #= ay:

3.22. Jf mo< £(X) s M in (0, 27), then mOeRS,(x) < M), i e
the F’éfé?-”%é‘%ﬁ@f&f%&bnﬁgﬂd in the same zange as the function f.
(In particular 6, 3> 0 it f3» 0). This_follaws from the first for-
mula 3.201(2) if we replace f(x +f)>First by m, and then by M,
and take into account conditions gi),'ﬁ'i).

If m<f(xXY<< M for xei={a\B), then, for every >0, lhere
exists an integer n, = ny(%} sz{ofzf that

(1) m—3< o) < Mot s for xehy=(a+5b—23),n>n,

Break up the first inile\gral 3.201(2) into three, extended over
(—%,—8), (—85,8), (B.2), and denote them by o, ol of. If x el
|¢]</3, then x 4£'%¢/, and o) is contained between m and M,
multiplied b.y"\thé integral of Ki(f)/z over (—3,3). In virtue of
conditions,{fi)’and (iif} this last integral tends to 1. Since |
and | oz jrdonot exceed Mo{3)/z multiplied by the integral of |f(f}!
over A3, 7}, and so tend to ©, a moment’s consideration shows
that\{1) is valid.

,,,\:‘\'."_EF"O"‘ (1) we obtain in particular that m < lim ou(x) <
{ VHm oA{x) L M, for every a < x < b, T

Given a function f(x) let M(a, &) and m(a,b) denote the

upper and lower bound respectively of f in (4, 4). For every X

let M(x)=lim M(x— &, x4 &), m{x)=1im mix—h x-+ % as k0.

The numbers M (x), m (x) are called the maximum and minimum

respectively of f at the point x. From the last remark it follows

) Motre pracisely m < S,(%) << M, unless f= const.
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that, for every x, m(x)<Clim o,(x) < fim a.(%) < Mx). It in
particular a1 (x) = M (x) = o, then o.{x) > oo,

3.28. Corollarles of Fejér's theorem. (i) i ©[f] con-
verges at o polnt where f is conlinnous, or has a simple disconti-
nuity, then it converges fo L [f(x -+ 0+ f{x—0). In fact, if Y
series converges to s, it is summable {C, 1) to the same valog N

More generally, if x is a point of continuity of f, the interval
of oscillation of the partial sums s,{x) contains f(x). <\

() If f is of bounded wariation, the partial sa{n.g;c:?j & [f]
are untformly bounded. Since the a,{x; f) are uniformly.fbdﬁnded, it
is pufficient to observe that the Fourier coefficients 0f'f are O(1/n)
(§ 2.213) and to use the formula 8.13(1).www dbiaulibrary org.in

{ity {f f is continuous and of period 2x, fhevé exists, for every
€ >0, a {rigonometrical polynomial T (x) § ?J.}kat |F{x)— T(x)|<e
everywhere, We may take for T (x) the #xpressions s,(x; f) with 7
sufficiently large. ' O

{ivy The trigonometrical sysg‘ér}t is complete (§ 1.5). If all
the Fourier coefficients of & continuous function f vanish, f(x),
a8 the limit of Fejér's means, vanishes identically. For the case
of discoutinuous f see the{argument in § 1.5.

(v) Hardy obserye”d:\that Dirichlet's Theorem (§ 2.6) can be
dednced from Fejér's hy» means of the following theorem from the
general theory of('Series: If u,+u, + .. is summable (C, 1) lo a
sum s and |u,i\&’Aln, n =1, 2, .., where A is a constant, the serles
is conwergen%‘,{iw' .

Wit{g’ﬁt:loss of generality we may assume that s=0, A=1
Let p, 24, be a function of # tending to + oo which we shall
defin§ presently. Since s, 0, the relation

Y ; ot s + Spr e LS 0 involves Sprrte i Sn 0,

e L
g I
N n+1 n+t1
BE<n, then |s, ~ 5| |ttpss 4.+t [ <IEF D+ ..+ 1n <
(a8~ k)/k and so the last relation may be written in the form

(1 n—psn_}_g_(n—p)(n-—!"f'ﬂ_,o,

r+1 2p(n+1)

—_—

W Hardy [5].
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where # =8 {n, p) does not exceed 1 in absolute value. Pul now
n—p=[:m}, i. 6. p=n-—{en], where 0 < ¢ <12 is arbitrary but
fixed. Dividing both sides of (1) by (n — p)f(n + 1}, we seec that
lim | 5o} < ¢/2(1 — €) < &, that is §, 0.

Although the above argument is, on the whole, not simpler
than the direct proof of Dirichiet’s theorem, it is interesting as
an application of the theory of summability to the eonvergemce
ot Fourier series.

Oy

3.3, Summability (C,r) ol Fourier series. Ft’ié)‘o fhe-
orem remains true if we replace summabitity (C, 1) by (C L), 7 Gh).

Denoting the (C,r) means of &{f] by an(x), we find, from 3.11{b),
2.3(2) the formulae \

sty AP FELERE M, oot~/ AL [ ) Kit
(1) - , " . p '\r v
Kift) =X A=k Dy)AG,

and it is sufficient to show that;.’tlie kernel K is quasi-positive.
We may suppose that 0 << r < 1L Condition (ii) of § 3.201 is obvie-
usly satisfied. Conditions (i%3hd (iii) follow from the inequalities

@) K< 2m, EiK‘éft)i L E for 1n < F <,

which we will now }}r\ve; C is a constant independent of # ¥From
the formata defining K. we obtain

‘\ ) u
K;(t) — C" y A?b— el(k“'%}f *\ [L‘é}{ Z A!k-‘.l e_‘-“]:
&A" sm 2A; sin L tio
@ \“ 51 ety @ , 2 Ml
™3 —— e it Lt R .
AY “\zareint t[ 9 =t A e ]f

)  Since A7 decreases steadily to 0, the last series converges
for £ 7= 0 and its sum does not exceed 44,73/t — ¢~} in absolute

value (§ 1.23). And since |3 (2)| < iz], we have that, for 0<f <7,
| KA(t)] does not exceed

{@siniH-14+ 4470 (28in} LOYAL <L C (T o o1 ),

" M. Rieaz [1],{2; Chapwan {1}
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Taking into account that nat? = a7 &4 (Y= > w7 4 for
nt = 1, we obtain lhe second inequality (2). To prove the first, we
note that |y =2+ 14+ ..+ 1=k+LSn+1 for 0T,
and so, applying 3. 11(6), we obtain from (1} that | Kx(f) [<a+1<2n
{(n>0).

It is of some interest to note that for r=1 the formulae (2)
are consequences of 3.201(3). Q

831 Z(f] is summable (C,r), r>0, to the value f(x)\at
every point « where ${f) =0 () ) and so, in parficular,, a!most
everywhere (§ 2.703). This theorem is a simple eonsequ?mce of
33(2). In fact 8

oa(x) — f{x) | < ( + f) | x(8) | 1Kﬂ(£nétd~‘ﬁ})ﬁftg'ary org.in

H {in
From the first inequality in 3.3(2) we sie Yhat P<2n @ (i/n) 0.
lntegrdtmg by parts we find that Q Crr D) £ +

+CU+ryn— j Bty -2 dt*o(1)+~C(1+r)ﬂ" f ot~y dt =0o(1)
1im o
(§ 1.71). 3U
3.32, Summabillty\(c 7} of conjugaie serles. Let o,
denote the (C, r) me& gf Sif]
For almost evRryx the difference

) \a(x)— (——f¢x(t)-%ctglfdt) 0<r<,

\ ik1fn
where ‘1"’@ flx+8—f(x—1t), tends to 0 as n—>oo. This is
in particular true for every x where ¥A¢)=o(¢) (§ 2.703)). The proef
”*s I’Qﬂghly, the same ag in Theorem 3.31. We have

\
3

Ew=_%f (6 Kty dt = -—ulm =A+B,
@ _ Pl s +8E
Kn(t) — EAn—k Dk(t)—- ctgét——-— Z 9 Sln%t
n k=0

—_—

) See Lebesgue (3] for r=1, Hardy [2] for the general case.
. ) See Privaloff [2, Plessner [2] for r=1, Hardy and Li-
tlewood [4], Zygmund [2] for the general case.
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Exactly in the same way as in § 3.3 we show that [K(2)| <2,
8o that A - 0, and the difference (1) iz equal to

1
3 f () HI(E) d + o(1),
T 1in
where Hi() denotes the last sum in (2). For Mi(f} we obtau{
the expression 3.3(3) with I replaced by 9. It follows that A{f)

satisfies the second inequality in 3.3(2), which, as we have thWﬂ
in § 3.31, is sufficiant to prove that (8) tends to 0.

'\
3321, The result of the preceding section sh@\\;s that, for

almost every x, the summability (C, ), r > 0, of L..,[f} is eguiva-
lent to the exisience of the integral

/N

(l)www%fa%@}'}l‘gél fit = hm (~— }—\ﬁ%{t) beigd tdt) ).

The problem of the existence of this integral is very delicale.
We shall show in Chapter VII thdt 4t exists almost everywhere,
for every integrable f. Taking,| ﬂ‘lrs result here for granted, we

obtain that L.;[f] is summab“lé {C,r), r>>0, almost everywhere,
to the value f(x) given in 9.

3.4. Abel’s sum\lnablllty. In connection with 3.201(1)
we put, for 0 r'ﬂ‘l,

f(?'; x) a4+ 2 {a. cos 11x 4 &, sin nx)rm,

:~\':. f(r X) = ): (8q 8in nX — B, cos nx) ™.
%

Takmg into aecount 1.12(1) and 1.12(2), we easily find that

O f(r X)=— f Fx 4+t P AL, f(r, x)—f(x)~— j 0.8} Pty dt,

) ~ L
Flryx) = —= [ oty Quey at.

1} _If Fx, %) denotes the second integral in (i), and it 1/ N hssl
then ={f{x, ) —fix, Ul (n -1 (1m) >0, ag n—re, HHE A h<h<tn,
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The functions
(2) P Ay=4(1=r}) ), Qt)=rsint/48),
where 4,(f)=1—~2rcosf+r?, 0 L r<1,

are cailed, for historical reasoms, Poisson’s kernel and Poisson's
conjugale kernel. The expression om the right in the first for-
mula (1} is called PoisSon's integral. I is not difficult to see.
that P(f} is a positive kernel, i. e. satisfies the conditions (i), (i),
(iii) of § 3.201. That r, which now plays the role of the indéxi,
is a continuous variable, i3 irrelevant. Condition (i) follows rdm
the inequaality 4,(8)> 0. Condition (ii) may be obtained iiitegra-
ting both sides of 1.12(1) over the range (— =, =) Sipcé A:(8) =
= (1—r)*+4r Sllﬂ?' %t, we see that M’(a):h@ﬁrﬁf@;t&ﬁl%@?y\.(_artg‘%:
g« {1~ r%)i8rsin 50 as r—1, so that condjtien (iil) is also
fulfiiled. Hence RN

Theocrem 3.21 remains true if we rep{d{'e\summabilfty (C, 1) by
summability A, The reader has, no dgubt) noticed, that ihis theo-
rem is a consequence of Fejér’s theorem and of Theorem 3.14, but
a direct study of Poisson’s kerne:ki’si interesting in itself.

3.41. The functions f (r, &), (s, x), as the real and imaginary
parts of a function analytic Tnside the uait cirele (§ 1.12), are
harmonie, that is, when.,{teated as functions of rectangular co-
ordinates £, v, they satisfy Laplace’s equation 9%/ds® + 0ot =0,
Let us denote the,l%lar coordinates of points in the unit eircle
by 7, x (0 < r < 1,07 x < 27), and let f{x) be a continuous aad
periodic functjod~of x. The function f(r, x) defined by Pois-
son's integrdfyends uniformly to f({x) as r - 1. In other words,
Poisson’s\julegral gives a solution (or rather, as it is well-known,
the solitien) for the case of the unit circie of the following
very famous problem (‘Dirichlet’s problem’: Given (1) a plane
Ieglon G, whose boundary is a simple elosed cutve L, (2) a func-
tion f(p), defined and continuous at the points pel, to find
a function F (p), harmonic in G, continuous in G+ L, and coin-
ciding with f (p) on L. However, in this special case of the unit
circle, Poisson’s integral gives a solution of a more general
Dirichlet's problem, viz. when the limit function is an arbitrary
integrable function (§ 3.442).

342, Jf m < f(x}< M. then m < fir,sy< M m< A<M
Jor xe = (a, b), then, for every 82> 0, there exists a number r,
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such that m — S flr, ) < M-+8 for xe{a+ 8 b6—2), rplr <1
The proof is essentialiy the same as in § 3.22,
If M(x,) and m(x,) are the maximum and minimum of f at
a point x, (§ 3.22), and if L is an arbitrary path leading from inside
the unit circle to the point (1, x,), the limits of indetermination ef f(r, x),
as the point (r, x) approaches {1, x,) along L, are contained between
mix) and M(x.}. In fact, given an ¢>> 0, there exists an 2 such,\
that m(x))—e << f{) < M%)+ e for {x—x,| < A Supposing,
as we may, that £ <{e, let us apply the preceding theorem, gmh
(g, By =(x,— h, x,-+A) 8=nf2. Then, if {r, x) belongsto\ the
curvilinear quadrangle (Q) 7, <7 <1, |x— x,|<Ah/2, A(YX) is
contained between m (x) — & — 22 and M (x,)+eS 42, and
a fortiori between m (X,) —3¢/2 and M (x,)+ 3s/2. Binde, from some
point onwards, L lies entirely in Q, and ¢ is arbitfary, the theorem
fo]lf)ww“}EWIﬁbﬁ%‘i‘]ﬁlaﬁiEi{; {fgf is continnous at xyim f (r, X) along
I

L exisls and is equal to f({x)

3.43. Let x, be a point of simpls_Riscontinuity for f. To
determine the behaviour ot f{r, x} in,’the' neighbourhood of (1, 1),
suppose that xo=90, 2/ (0) =f(+ 0) £YH—0), d= f (+0) = f(—0) F=C.
Let §(x) denote the pericdic Junction equal to (x — )2 for
0 < x < 2. The difference g £)e= f{x) — & {(x)d/= is continuous at
x=0,and g{0)=50). If g{n x) and &(r, X} are Poisson’s integrale
for g and B, thenf(r,x)fng(r,x}-l-a(r,x) d/m. Let ¢ be the angie at
which a path £ meetsithe'veal axis at the point (1,0), that is « =lim§,
where 8-is the angle of the vector (1,0)(r, x} with the real axis.
Since g (r, x) = g40¥= 1 (0), and & (7, x) = arctg {r sin x/(1—r cos X)}
(§ 1.2%(3)), we(Se# that f(r, x) tends to f(0) 4 a d/x, i. e. the Hmit
is a linear fubction of the angle at <which [ meets the radius at the
point (1)) 1t is plain that if « =lim § does not exist, £(r, X)
osciiga;pes\ tinitely as {r, X} +(1, x;) along L.

A\ \3.44 Fatou’s theorems?). et F(x) be a function with
Fourier coefficients An, Bx. If [F(x + ) — F{x — $)}/2t»1 as

t ~ 0, where | is not necessartly finite, then &' [F} is summable A at
the point x to the valye I, i e,

'} The correspondiag result for Fejér's means is as follows: for every

{f .} =0, the limits of indetermination of {200 4 k)t are contained between
mix)y and M{x).

) Fatou [1]. See alse Groez [il
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& Z n (B, cosnx — A sinnx)ri= AF 5

s{asr-1.
n=1 _dx

More generaily, if 4 <!, are the limits of indetermination
of the ratio [F(x+ ) — F(x — £)}/2¢, as {0, the limits of inde-
termination of the expression in (1) are contained between I
and 4, !}, We have ;

- \
1 N
F(r,x)=— [ F(t) Pt — x)at, O\
@) "o O
a F(r, x) '

'*——*/Fmﬂu—mﬂ"f*
dx )

W W d.bl'}uhbla FY Org.in
where ’ denotes differentiation with respect to #and, since P} is odd,

. O

oF {’ D L[y oeeind Py at,
= 8

where y (£) = [F(x+) — F(x =¥)}/2sinf. Then, in order to
prove the theorem, it is sufficiéiit to show that the even function
—sin £ Pl(t)/r=(1— r?) sin®¢/di(t) possesses the properties of posi-
tive kernels, Condltlons. ) and (iii) of § 3.201 are obviously
satisfied, and we venjty {ii) by substituting x =0, F{t)=sint,
Le y(f=1 N\

3.441, If &' (xo) exists and is finite, then OF (r, x)/dx - F'{x)
When (r, x) » P0A,) along any path L not touching the circle. Sup-
pose, for simplicity, that x, =0, F(0)=0, and let r=r{u), x=x(u),
0Cus rt‘l) 1, be a parametric equation of L, Put— sinf Pl(t—x)=
= A6 Yor (r, x)c L. The theorem will be proved, when we show
th’i‘i Ault) satisties the following conditions

N :(i} f | Au(£) | dt = O (1), (ii) % f Affydt -1,

(i) M3 =Max | A)| (0 < 5 < ¢ ) tends to 0, a8 -1,

L e. that A.(f) is, essentially, a quasi-positive kernel. Tn fact, put-

—_—

) 4, and 1, are eontained belween the smallest nnd the largest of the
four derivates of F at the point x.
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ting F(t)/sin ¢ — F'(0) = G (#), and denoling by 0 (2) the leit-hand
aide of (ii), we deduce that

3 =% =
ﬁf.é(Lﬁ 6() F(0) == fG(t)Au(f)df =f+ f‘*‘
- ;

The last two iniegrals on the right tend to O for fixed o (cOn'd.
(iii}}, and the preceding term is small with 3 (cond. (i)). \

Now relation (ii) follows from the gecend formula 3»%4(2)
it we put F(f) =sinf. The let‘t—hand gide of (1} is gfusl to

N\

—f]sm(u-x),o,(t)gdt < 2!sin x! j|P'(t)1dt+2j Gnv | Pityi dt.

Slnce E{H) < 0 in {0, w), the first term on the«ﬂg}lt is less tham
2x PA %ﬂ?ﬁﬁ}au{}bm:@ﬁ}gm\(r, x) & L. The lapt*term on the right

is also bounded, — 2 sin £ Pi{i)/r being a p\bsitwe kernel. Condi-
tion (iit) iz obvious. “\

3.442. Corollary. Lst F be @b mtegral of /. For any X,
where f(x,) is finite and equal toF" (x,), we have f(r,x)~f (XD
as (r, x) - (1, x;) along any path hot touching the circle. in fact,
supposing for simplicity that the constant term of & [f] vanishes,
we bave &1f] = &'[F}, and the result follows from Theorem 3.441.

345, At any pqm} X where f is finite and is the differential
coefficient of iis m{zsgfal F, we have

: f(x-H) f(x—8
M Foede{-1 at)~ 0, asr 1Y,
f& ( f 2ig4t ) asr>17

where\tié humber v =y (r), 0<m < /2 is the reof of the equation
cos ¥ =2r/(1 4+ r"). It ia plain that 4> 0 as r -1,

More precisely,

fmm the formule sin v =-{1—r) (1 +r}(1 4+ r?) we find that 7~ 1 —#3).

m’

\ )T

he last formula in 3.4(1) gives us z f(r, x) = — } 9:A8) QL) df -+

- f 340 QD) — Q, (O] dt ~ f $48) Q, (£) &, and we have only
% 1

Y Privaloff 2], Plessner [2]. See also Faton [1}.

) The theorem holds true it we replace 4 by 1-~-r #n (1), but this ie
irrelevant for gur purpoaes,
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to show that the first two terms on the right are o (1). Let B{A) = o (4)
be the integral of 4.(f) over the range 0 < ¢ < k& From the formula
for Qi{f) we see that Q.(¢) is monotonically increasing in (0, )
Hence, applying the second mean-value theorem to the first term,
we find that it is equal to Q,(3) [B(n)~8 ()] =9(1), since 0<z<r
and  Qr(r) <l 4 24 <11 —r). It is easy to verify that
QO — Q) = — (L= Q)2 (1 ~ cos?). Applying the samdie®
mean-value theorem to the second term in question, we findsthat
it is equal to the expression (1 — /) Qu(%)2 = O (1 —r) multiplied

by the integral Oy
£ . E R 4
b() B Y, FB(®sint, (D ~
9 _LwE) | B Sl)smi g : 2,
® :;J[ - cost [1 - cos ZL + ;{-(lv—éﬁ%"t’j ‘g?auqﬁfaﬁfol e

Bince B ()i{(1 —cosgz)=0("") = o(%~1),.and the last integrand
is 0 (£7%), the left-hand side of (2) is o (nji}\ﬂ(l — 1yt and this
compietes the proof. AN\

Since 7 (r) tends continuonsly %0 0 as r-1, we see that
& necessary and sufficient conditionlfer the summability A of ©{f]
at the point x, is the existence Sf* the infegral 3.321(1), which re-
presents then the sum of S[fRS

45, The Cesaro Summation of differentiated series.
According to Theorem @442, & [f] is summable A at any point x
where / ig the finité\@erivative of its integral, whereas to prove
the summability (C,~1) we used a somewhat stronger condition,
Viz. @(f) = oXf). Indead it may be shown that the former con-
dition does/met ensure the summability (C,1) of S[f]. We will
ow proye¢ tivat.

(Y\AZ every point x where FP(x)=1im [F{x+ k) —F{x—n)2~k
exis{s gnd is finite, 3'(F) is summable (C,r) r> 1, fo the 'val.ue
S A every point x where f Is finite and is the differential

NOfficient of its integral, Z[f] is summable (C,r), r>1, to the
Ualye HEGR)

To prove (i), of which (i) is a corollary, it is sufficient
0 show that L7(f) = sin ¢ [Ki#)] is a quasi-positive kernel if r>17).
This will be a consequence of the inegualities
————

) Lebesgue 3 torr=2% Privalot? [2), Young 6] in the ge-
Leral enge.

) The situation is the same ms in § 3.44, except that sint P}{¢) is & po-
Bitlve kerge,
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(1) | L) < n for 0 £ jn, ) | Li(t) )< Clar—1 " for 1n -t <

valid for 1<r<(2, C is a constant independent of n and f.

Let D, be Dirichlet’s kernel, Since | D} << 142+ .. 4k < 1?
for 0 < k < n, we find that [[KJ| < #% i e. | L)< n?t < n for
0 ¢ < 1/n, and the ineqguality (1) is established. ~

Using Abel's transformation, we verify the formulakg Ap g™

=0 o N
= [— Ap gitntt ZA“—le"*’J/(l —e”), Applying this formula pice to

the last expression but one in 3.3(8), we find that N
"‘E AL gt
. . TERRTI ) 1
(EVeE f T G [ —it *"'-ﬁ}_——.,—-—] =
eSO BB RN s sy 21 P e

..\

sin [{1 r - AN\ )
=Crl2 Smlg)—z_;..___[(dﬁj%,)_u_ﬁa_] "g[ ffﬂji')f S ar— e;ska},

i An2 sin 43 Al@sink )35 0*

where C, = AL /AL + A’_‘zguﬂ_ O(1/n). Let P, Q, R denote the
three terms in the last.formula for K. Then Ph= 0{i/nt%),
Qn = O t+) + O #+) = O(1/w =14+ it nt > 1. Let
w(fy=expi(n+? }t?(fc’ sin 1 £)® and let B{£) be the sum fonomng
a(t) in R. Using Tt%orem 1 22 we see that |B(f)| <44 || 1 —e "]
= O(m—t), |8 < 4 (n+1))] AZR 1 — e = O (w—2{¢). Since,
on the otheb\hand, «(f) = O(t—“), a' ()= Ot + O (19 = O (n/tY)
it nt > 1,'\(3 find that |R)] /84 8a[JA = O (a2,

%[ cting the results, we obtain thst [KiH) = O (1/nf%)+
F Ottty + Ot i) = O (U~ ¢ t) if nf = 1. Thence

wébhave Liff) = O (5~ it i 1, 1<Cr<<g, and this com-
-~ (Pletes the proof.

N/ Let G(h) be the integral of ¢ {£) = f (x-4£) 4 f (x —£) — 2/ (%)
over the interval 0 < { < Ak Applying (ii) to S [9], we see that
& [ f] is summable (C,r), r>1 at the point x and has the sum f(x)
if Ghy=o0f(h) as R 0.

Essentially the same proof shows that under the hypothesis
of Theorem (ii), we have the relation 3.32(1), for 1 <r <2,

'y The series defining }' convergea tor 30 it r<- 2,
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3.6, ¥ourler sine serles. Let f(x) be an odd function.
From the first formula 3.4(1) we deduce that

M Fem =2 [ FOP~0 Pt tyat

) If 7{x)320 is odd and non-negative in (0, %), the function O\
Jir, x) {s positive for 0 < x <= More generally, if f(x)Z const.\
satisfies an irequality m < f(x) < M for 0< x <, then )

Y
@ mp(r, oy <<flr,x) <Mp(r,x) for 0<x<ng, 0 <X,

where 1 {7, Xy, which is positive for 0 <x<w is tkeﬁ:f)i.ssorz inte-
gral for the function p(x) =signx (jx] < %w'dm%u\ibrary,org.in

The tirst part of the theorem follows from'(1) if we note
that Pi(x — 1} > P(x4¢) for 0 < x <5, 0< !'ﬁ(\:.‘. For this reascn

we have siso N\

S J
NS

m o .
—~[1Pix — 5 P(xt+ 5] de < f(r, DR [IPAx~ )~ Pix ) at,

which is just (2). N

(i) Theorem (i) remaims\frue if we replace summability A by
Semmability (C,3) 1). In partieular, the inequality (2) should be repla-
eed by m pi(x) <c;‘:(x)§wp:(x), where o and p. denote the (C, 3)
means of f] and)& [i].

For the proof’it is sufficient to show that the kernel K6
is a strictly ¢ scgnsing function in (0, =), or, KD being a trigo-
hometrical pelynomial, that [K2(#)]' < 0 in (0, 7). The last expres-
sion s the Cssiro mean si(¢)/A2 of the series {1 cos £+ cos 2¢ ...

ditferentinted term by term. Thus from 3.11(1) we conclude
that,.

S

\ ™ == 1—-rt t 4reint
4 ! o3 A= - _—f r———
N\ 250 [2 a—rp A,(t)} i—r

Where 4,(£) ~1 - 27 cos t + 2. Using the formulae 3.11(1) again,
We see that the expression in square brackets is the power series
KO+ 2K 7+ .. +(n + 1) Kot 7" + .., where the coefficients

A} >0 ave Fejérs kernels. Since 7/(1—r?) =71 +r* + ... has also

—

D Fejér 4]
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nop-negative coetficients, we see that s3H#) < 01 in (0, =), and this
ecompletes the proof.

3.7. Convergence factors. A sequence i, Ay, .. i¢ said to
be convex if L ha2 0, £=0,1,..., where dl, = bn— hyts, d°hn=
= A% — ddeiy. Suppose, in addition, that {}.} is bounded. Since,
for {&.} convex, Jh. is non-increasing and cannoct be negative
for sny value of n (for otherwise we should have *a “0), we
have dh; 2 0y . & hp 32 hegs -+ A > — oo, In the equation M Rh=
= A% 44X +... the terms on the right are steadily decregsing) and
so, by a well- known theorem of Abel, ndhq -+ 0. Takmg this into
account, and applying to the series 1, 4}, + L AANA .. Abel's

transformation, we obtainm: [f {d.} is convex andi)qknded tﬁen {3}
decreqges, Mblam Biang dhg.iseries

2 "\\Q
(1) Eﬂ(n + 14 3\,\

X 3

converges to the sym b, —lim X,

If a function X (x) is twice wifferentiable and X'(x) > 0, the
sequence (A, = {h (M)} is conv’sx In fact, by the mean-value
theorem, d*h,=Jh, —A}\,,+,f-a{9,,)+k’(9,.+1}> 0, where n<8,<n+1.
In pariicular, if we put )\n--l,flog nfor n=2,38,.
h;, *, suitable values, {9\.} will be convex,

We need th “}Eowmg lemma:

Let s, andya, \denote the partial sums and the first aritmetic
means of a Sgrles w,~f u; + If {0,} converges and Sn=0{1/unh
where (..} s Convex and tends to 0, fhe series uyty + ity + -
comrerges'\ ‘Applying twice Abel’'s transformation to the partlal
sum \({ii&f’the last series, we find that it is equai to

—3

ké; (k+ 1) 0p s 4 n0ay Ay 4 Sppin

., and choose for

4k§0(k o 1) a5 Apa.

Remark. A sequence {L.} will be called a quasi-convex se-
quence if the series (1) converges absolutely. The lemma will

subgist for quasi-convex {p.} if we prove that adp,_ -~ 0. But
]

N
| disn | =lm,

| o
pl<m £ () 2l =06

'} The tirst two coetlicients of ihe series [K, + 2K, r-b..Jt =1/ 2K, r4v
are posltive for 0 <Cf< %, and this shows that s3(1) < 0 for 0< i< n
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As a corollary we have the following theorem.
274 [f a,, b, are the Fourier coefficients of a function [, the
series
; g;,_gqs_kx—}— E_J;f_sin kx_, E ay sin é_’.x — b co8 kx

£= log & fr’ log k

converge almost everywhere ') (§§ 2.73, 8.81, 3.321).
It i= not difficult to deduce that if f is continuous in (a 5,
the first series converges uniformly in every interval (a —i— b — &),

3.8. Summability of Fourier-Stielt]es series?). Let £ Qc), 0<’x/2-
be 5 funetion of bounded variation. From Theorems 2.13 and, 35 we sege that
E{dF] {5 summable {C,7), r>1, at almost every point and has the sum Fiix).
We will now prove a strcnger result, viz. — d];n\ahhbrary OLg in

Let s[{x) and Si(x) denote the r-th Cesaro meapsyef) = [dF] and E [df).
0=k, then

— F -Lc Fix—1 —2F(x
(Aa) 5,(x) 2F/0), (b) sh() — { 1,4 (f \H;sl(nu F j} "
for almost every x. >
We shall only sketeh the proofy wlnch is similar to that of Theorems
831 and 832 First of all we need\ ihe following lemma, apalogous to the
result of § 2.708. [let '. N
Filty=F{x+4+8—F x——f)—?fF’(x), Gty = Flx -0 Fx — 8y —2F (x),

and fet Dy, ¥ (1) be the. ‘mtai variations of the functions F(t), G.it) over the
interval 0.t B T n\fm almost every x we have Qﬁx(h) = o(n), ¥, Ry =0k
Let = be an aphitrdcy mumber, and let V,(f) be the total variation of the
function F 1) — q‘t.:"t':or almost every x we have Vo =F ) —ea, i e
4 "\ 'h

D"
\\’“—jld{F (xtn—ath| | Fx)—a’ as ka0,

where bhe suffix ¢ indicates that the variation is taken with respect to the

vatiable . Considering rational values of « and arguing as in § 2.703, we
- J”-"-“G that, for almost every x, we have

\ 3

@ / | AF (x £y —t Fi0)} | =0 ()
o N .
and hence f Pd, Fo) | =0 (B, f[ d, G4ty | = o (1),
a i

') For the first part ree Hardy [2], for the second Plessner [2].
» Young {3, M. Riesz [2], Plessnar [2].
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Now it is sasy to prove the theorem. From the formulae 1.47(1) we
obtain that

.
o=l fK’(x—t)dF(t) ! f.vc B {Fx+n—Fix—al,
—T
™

™
1 [
S — Py a2 f Kidt) d FUt | 4= F 0 1< = [ixonarini=
L]

n ™
=1 f
2]
Suppossing that ®(#) = o (1), we obtain, in virtue of the meqll-‘ihtles

3
3.3(2), that the first term in the laat sum s <l 2t & (1“11);1'——0(1() }ntegratmg
by paris, we find that the second term does pot exceed

Q

-1|»-

N
.\\

4 i
W braulibrary.org. R )
“ﬁdmxm: Ly ,,+&n' 1 [ S N o1,
Y
and this givee the first part of the theoram. Tu %tum the second we observe
that

A

. .
) = — }; f B4, 1F (x+ t) +F(£-— 0] = f KHity d, G(t),
= 0

v 1 ‘fz Gx(ﬂ 1 & 1
" ~\

($ 332, From the lemgné ‘We easily dedues that ¢ach of the terms on the
right is o1} Integrat?}x ¥ parts we verify that the left-hand side of the

laat equation differst from the left-hand side of {lb) by a term tending tc 0
as n -y, Thia cDRlpiBlEB the proof.

3.51. T{l\‘lemma proved in the preceding section s of fondamental
importance far’the theory of Fourier Stieltjes saries. From it we deduce that
the partia “suma of & [dF] and ©(dF] are oflogn) at almost every point.
Similﬁﬁy, teking for granted the result that ‘B IdFT is summable (£, 1) aimast
eya{yﬁfhare,wa verify that Theorem 3.71 bolds true lor Fourier-Stieltjes series

&)
\ 4 8.9. Misecellan theorems and examples.

1. Let (Lyx=g¢(D), J-'—~‘1-' {t, 0t <22, be a closed and convex curve, It
¢ty and ¢, (1) are the Fejér meana of T¢I and & {4}, the eurves x—-r.pn(t) y==bit)s
n=20,1,.., lie in the interior of the region limited by L. Fajér [5].

[if- A, B,C are constants, and A¢()+ B¢ (®)-+C>0, then Ap ()
-+ B (t)+ C 2> 0.

2, Let f,{r,x} be the n-th partial sum of the series Fir x) (§ 24). It

m )M, 0 x 0 2, then m<If(r, )< M tor 0<r<{¥, but not neces-
sarily tor r >34, Fe1ér [2%.
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{The expression {+r cos 4., |#? coamc:l—'z"E'nH [cos (n+1) x—reosny]
2{1 —Z2rcos x4 %)

is non-negztive for r+1/2. The sumy 4 r cos xie negative for x = r, if (-3 18

8. Let F th) and @,{k) denote the integrals of ¥idt) aud |2, (¢)] over the
interval ¢.7 =7 A, Neither of the conditions (1) F (b =o(R), (ii) D (W=0(h)
hecesgitztes the summability |C,1) of € {f] at the point x. Show that if botk
of them are satisfied, then €[f] is summable (€,1) at the poiot x, to the,
value f(x). N\

[The avgument is analogous to that of § 3.3, except that pow we £on®
gider the integrals of ¢ {f) K,(f) over intervals (0, k), (&/n, =), where & i# large
but fixed. In virtue of (ii), the second jntegral is small with 1/k. The\Fejér
kerne! has a bounded number of maxima and minima in 0, 2im), ‘agd“so, enl-
ploying the second mean-value theorem'} and the relation (i), we dbtain that
the first integral tends to 0. ¢*0 ]

Thiz genaralization of Theorem 331 ia typidal WnQ B L Y 1RER iRe
may be generalized in the same way, The thearem is daeNd H a rdy and Li-
titlewond (5] Y

1 Leg {an} be an arbitrary sequence of nun@rs such that =, = 0 (1),
and let a7(x} be the r-th Cesaro means of E[AN 0. At any point x whers
D {My=0th), we have SalX I &) = £ (x). « \

{Thiz is an snalogue of Theorem 8441.° The proof is similar to that of
Theorem 2.3). ol |

5, Let .s‘;(x) be the modified pa}ﬁél sums of S[f] (§ 2.3). A necessary
3 .
~ " s —f
and sufficient condition for theseonvergence of the series () Zk—k— at a
k=1

e

. L™ ) Fond
poiet x where @ (h) = O(E\\Is the existence of the integral j 2
o ¢

dt.
X 2ainl ¢

[Let u, (x) be th‘e'. n-th partial sum of tbe series sinx-FYgin2r-}-..=
=6=02 100 S 02 — w,x). 1t 1 plain that ju,() < ax, and making
Abel's transtoraiggion we obtein that rp(x) = O{1fnx). Let S,(x} be the n-th
partial sum &f"S." We have
\‘\ 4 . I'm
" ',' 1 l:"o‘x(f) 1 " 1 _ 1
AN S = —D] singe 404 _6/ i ,f —ATE

N

. g .
N/ Kow 49, and, in virtue of the inequality for r,, we obtain that

1 7 e f(t) me—t
Sal) — — f—i-)—-—d:»o. See also Hardy and Littlewood [4]].
F e 28Rkt 2 .

8. Let 5,(x) be the n-th partial sum of S[f]. If feLips, 0<a<1,
then 19,(8) —~ F () | = On—a logn), (Lebesgue [1]).

—

") Instead of this we may integrate by parts. The latter argument holds
troe for the method (C,r), r >0,
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: —g--!
[Sea the expression Z.701(1), where the last term is now O™ ), It

has been shown hy Lehesgue (. ¢.} that the iogarithm in the term O (n—%log n)
ecannact be omitted].

7. Let o {x) be the Z1irst arithmetic meaps of EIf]l. If felipe,
0< 0 <1, then o () — f ()= Ofn™®). it e=1, then s, {x)—flx)=Ollog ..
8. Bernstein [1] ~

1/n

[Fie, — fts /-(qx(t}lk' (t)df{nf QU dt+— fO(t“")dtL "o \

\
8. That the previous theorem cavnot be stremghtened 191: a_»l MAY

be seen from the foliowing result. Ii at a point x the rlght-hand side and
the left-hand side derivativas exist, and f"(x -0} —F'(x— 0} = 2 g/ thep we have
o l0)y—flx) = 2g (log m)/=n. Szhaz (1], Alexits (1], Jaco il

(Letwgey d DRAU BRI QS th — s (1 4+ (r)) siny " whers : (5 = o(L).

1 1-—cos(n—}-1)t NS 1mcna{n+l)td
G“(x)_-ﬂx}“:(rz-]-l} sin k% ¢ —*:—r(ﬂ-i—lj[-( sin

The first t2rm on the right iz ‘2(log m)j=n, and the second is o (log A)m
{§ 2.821)). .\ \
9. If f is integrable in the stnse of Denjoy-Perrom, then, for almost
every x, $[F) is summable (), ¥ >>1, to the value f(x). Privelotf [ilL
[This is & corollary ?.i.ijeorem 3.5].

10, I t=flx+ )'X:?‘(x— 0) exists and is finite, the sequence nb (x)=
= 11 (b, cos nx — g, sinnxhia summable (C,r), r2>1, to the value ff= If f1is of
bounded variation, thedtheorem helds trae for r>»0. Fejeér (3]

{The progh 88 khe first part is similar to that of Theorem 35).

11. Th®dequence {s,} is said to be summable by the tirst logarithmie

mean, to\gfe\"rh]ue §, 1 =i, + 824 s fadlog n+5 as Avee, I {S-,} iz
summabld {C,1) to s, then 5,75,

JFor the theory af the logarithmic means sep Hardy and Riesz,
Dirfehiet's seriesi.
Y7 12, The methed considered in the previcns problem may be sometimnes
affective if the sequence is summable {C,14¢ for any ¢ >0, but not for
:=0. An instence in point is Theorem 2.631, which may be interpreted in

the sense ihat the sequence n{a,sivnr—b, cosnx) is summable by the first
logarithmic mean (see alsc § 3.9.10).

Theorem 3.5 may be completed in the
same way:

HFixy=1m[F (x4 i) — F(x— M2k exists and is tinite, then
'[F] is summable ai the point x by the firat logarithinilc mean and has the
sum Fx). Zygmund {i}, Hardy (4l

18. _Let f be integrable, 5 (Y= f{x 4 &) +f(x — ) — 2f («). The summa-
bility of S'|f] is closely connencted with the existence of lim/ (x, kY, where
hes
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2 dt, More precisely, at any point x where (*

47 k aln?lt

79 _ jet —n
0«

»Oas r i Plesaner [2].

63

]
) f 2,00) dt = o(#)

{in particular at any point where f(x) exists and is finite} we have relation

14. A result analogous to the previous theorem holds for Cesdro

means of order r>»1, or for the first logarithmie mean®}. The proof is sil

to that of Thearem 3.5.

13.

bility {£,2), Fejér

[4].
[{!ﬁ "t)}’J is pasitive, if sin {n - %)t =0, cos (i) i= —"h&ﬁﬁ Y E<H]
AN
£
4
'\
www‘d\w ulibrary.org.in
N\
oV
v
KX
g::;‘ )
B
N\
N\

'} lu the condition (*), ¢,{f) must be

replaced by ;2 (8.

'o

in Theorem 3.6 (ii), summability (C, 3} canuothereplacedﬁxs
\/

®
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Classes of tunctions and Fourier serigsi‘:’

41. Inequalities. We begin by provinge @ mumber of
inequalities which will be applied in the sequel.)

Let ¢ (idpGufiorasely iWe say that FERNE < x < &, belongs
to the class La, b) it the function ¢ {|f!) j&jintegrable over (4, 8).
It it is not necessary to specily the inter%’al, we denote the class
by L, simply, 1t ¢ (u)=w, r>0, we)Write L’ instead of L, L
instead of L' and put N\

s’¢
AN
*

W, [ a, 6] = (j ¥i !rdx)w;.'}'g[:[}; a, b] =(“,1- f}ff dx)”’.

b —ay

When the inlerval (g bj}\is fixed, we shall wrile simply W {f1,
A1 f]. The former \%pression may have a meaning even when
{a, b} is infinite. (I8r =1 we shall write 9, ¥ instead of Wy, X,.

"

Similarlys ':gi‘ven & sequence &= {u,}, finite or infinite, we
write N
\V §
A la] = (X | a.lypr?).
AN 4.1, Young’s Ineguality. Let g {2), 320, § (v), v 0, be iwo
,\”*ﬁpﬂctions, continuous, vanishing at the origin, strietly increasing,

') For a detailled discussion of various inequalites see Hardy, Little-
wood and Polya, fnegualities. )

N
*) Given a finite sequence z = a,,a,, . W, ot B e =(’3§:Zian l,)b'r.

a=1
This expression has properties analogons to those of % {71, but we shall not
congider it here. g
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tending to o, and inverse to each other. Then, for a4, & > 0, we
have the inequality, due to Young?!),

x ¥
() ab< D@+ V), where ®(x)= [ gdu, ¥(y)= [ yan,

The geometrical proof is obvious. It is also easy to see that the
sign < can be replaced by=if and only if b=¢ (a). The functions
and ¥ will be called complementary funetions. If ¢ (1) = u*, ${e)=v',
#>0, 14+a=r, 141ae=r, we obtain i\

r rt ol
@ ab< L4 2
: ror Lo
where the ‘complementary’ exponents ¥, %S R0HHAHETE{ the
relation 1/r+1jr'=132. This is a generalization of the well-known
inequality 2ab < a?+ 4% to which it reduées tf r = ' =2, It is plain
that either r <2 or r <2 < r..‘F}om {1} we deduce that, if
fx) e Ly, g (x) e Ly, the product fg:is' integrable. In particular, fg
Is integrable if fel, gel' &\

412. Hjlder's ineq,u:ﬁi’tles. Consider non-negative sequen-
ces A ={A,}, B={Ba}, 48 ={As B}, and suppose that 9,4]=
= N.[Bl=1, r>1, Substituting, in 4.11(2), A, B, for 4, b, and adding
ali the illequa]it'e&:n%re obtain that 9 [AB] < 1. If {a.}, {6}
are non-negativésand %ja), N-[6] positive and finite, then, putting
An = an/R,[a], /Bn" bafNr[B], we have NJ[A]=1, N, [B]=1, and
from % [ABI"<™1 we obtain the first of the Hélder inequalities

A

(0 @ofat) < gl 910), M) < WA Molgh 7> 1,
s’\

which" is obviously true also if %faj=0 or %.[5]=0. The
.getond inequality (1), where f, g >0, is obtained by the same
\ ‘!lrgument, summation being replaced by integration. In the gene-
ral case (g, 4, f, g complex), we have

b
@) | T auby| < Nl Ne[8), | [ S5 dx] < ML £] Mir ),

—_

Y Young {7 )
). This notation will be used systematically in this chapter, ao that by p/
We ghall denote the exponent g such that ljp4+1fg=1.

A, Zygmund, Trigonometrical Serias.
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ginee the left-hand sides in (2) do not exceed MM [ab], "M [fg} res-
pectively. '

A little attention shows that the first relation (2) degeunerates
into equality if and only if arg (4, b:) and 4./i6.|" are inde-
pendent of # (arg 0 and 0/0 denote any numbers we please).
For the second relation the conditions are: arg f(x) g{x) and
If (x)ilg ()7 must be consiant almost everywhere,

The number A, finite or infinite, will be called the es.se(zrzai
upper bound of a function gi{x), a<{x < b, it (1) g(x) < MiaTmost
everywhere, (ii} for every M' <M the set of x for whlch S(x) > M
is of positive measure. If M < so, we shall call f. &n essensiaily
bounded function. We will prove that'if M is fhe essential upper
bound of | f(x)! in {(a, b), then W,[f; &, b} > M @8 )r + co'). In the
first place Myhfliseadl@reia)”, so that lim IR]Y'] < M. Next, it M
is any mumber < M, and E the set of péimts where |f{(x)|> M,
thea M, {f1 = | EPr M, Hm D] > My ‘argd so lim W,[f] = M. This
completes the proof in the case of (@)F) finite, or when (g, b) is
infinite and M= os. Let now (g, b)\pe infinite and 0 <M <o, We
may suppose that M~=1. The . Same agument as before proves
that lm WM Ifi>=1. To show that Bm M, [f]=1 we need only

observe that W{f] is a ﬂecreasmg function of r which, by the
preceding remark, is 7>

In virtue of the reSult just established, it is natural to define
M.l f; @, 5] as the“eysential upper bound of |f) in (a,5). By L™
we may denote §he class of essentially bounded functions. The

second mequahty {(2) has then a meaning (and is obviously true)
even whemyt= oo,

Eg;a‘ any series @, + 4,4+ .., 4,0, can be represented as
the integral, over {0, o), of a function f(x), where f(x)=2a, for
n.;f{r‘gcén—{—l, n=0,1,.., the above remarks apply also to series.
;} 4121, Let fie L7, i=1,2, ..,k where r;>>0, 1/r, + 1jry+
‘4 .ot1/re=1. Ap easy induction shows that M [f,f, ./ »] <
< W [F 1M 2] . W, [ /2], Similarly for series.

413, Minkowski’s inequality. Let a = {a,}, & = {5} be

two sequences, 8 + & = {d» + ba}. We will now prove Minkowski’s
inequality

'y Hemee N Af12Maps roe



[4.14] Convex funetions and Jeneen's ineguality, &7

(1) MNola+ &) < No[a) + N [8), »r>1.

Writing (@ +8a) = (@) + &)~ @+ (@a+ baY " b, and applying
Hilder’s inequality to the sums of terms {a,+8,)'a, and of terms
(@nt-b,Y 1 r, we find that N [a4+8)<N) " [a+6] N [a}+ N7 a5 N ],
and (1) follows,

The same argument proves Minkowski’s inequality for integrals

(2) Wolf + g < MIF1+ Mg, 71 O

If 0<Ir<C1, all these inequalities cease to be true. However
we have then ».;
(3) WS+ &)l <M1+ Mgl 93,[a—i—b] ETE,[a} 51&’[&], 0<r<1,
brauli alyor ]
which inequalities are simple corollarles of the inequality
Ky <y, x> 0, y20, 0<r <1%r, what amounts to
the same thing, of the mequahty (1 +x)’( 14 x". To prove the
latter we observe that (14 xy—1 —.~x’ vanishes for x = 0 and
has a negative derivative for x > 03"
Let % (x, 3) be a funetion def‘ned for a {x b cLy<d
An argument similar to that which led to (2} gives the inequatity

1/r

v 4 ¥ 1# i
@ {_/ _,/h(x.y)dyii\dx} < j{f !k(x,y):'dx}dy, r>1,
\ a

which may he consrdered as the most general form of Minkowski’s
inequality since k% contains the results (1) and (2) as special cases ?).

4.14. Cbnvex functions and Jensen’s inequality. A fun-
ction ¢ .," < x <P, is said to be convex if, for any pair of
points #,°P, on the curve y = (x), the points of the arc P, P,
are QBIOW or og, the chord P, P,. As an example we quote the
fulmmn X7, p = 1, which is convex in the interwal (0, c}.

For any system of positive numbers p,, py, ..., Pn, and any
System of points x,,x,,., %, from (s B), we have the inequality

Y From the inequalities (2) and (3) we couclude that, if fel’, ge L", then
U4get’, r~q
B X (e dy=(0,2), & (x,y) =/ (x) for 0= y<1, hlx,y} =g (x) for 1:y<2,
equality {(4) reduces to (@, If flx)=a,, g{x) =&, for n< cx<n-+1,
*ti- s Wo obtain the igequality (1h

the in
n=g
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(1) (p!. xl +P1 xz + '__-__'J:_Fgﬁ) _\gpl {P (xl) + e +Eﬂ_"i-"_{)§r3)’
pitpat ot pa 20 e

due to Jensen!). For #=2 this is just the definition of convexity,
and for 7> 2 it follows by induction.

If is obvious geometrically that, if ¢ is convex, ¢{x 40
and similarly ¢ (x —0), must exist. These limits can be neither
4 co nor — oo, Moreover e (x+ 0} =g (x —0) =g (x), i. & ,agfnyex
functions are continuous. \

Assuming ¢ continuous, we may take as the c[efiﬁition of
convexity that for every arc P, P, there exists s subarc 7} P
lying below or on the chord & P In fact, ifwﬁher’-e existed an
are P, P, lying, even partially, above the chord\ B/ F;, there would
exist a subamerffidyivgetinally above the\ ghord £ Fi, so that
the two definitions of convexity are equivalent.

It is easy to see that a convex fufiction has vo proper maxi-
mum in the interior of the interval )in which it is defined.
Let p (x) be convex in (0, ) andlet x, be a minimum of ¢. If
#{x) ia not constant for x> &, then ¢ (x) tends to 4 ov, as
x -+ oo, ot least as rapidly as a multiple of x. This follows from
the fact that, if x, <x; <X, <.., %:— oo, the angles which the
chords joining (x;, ¢ (¥ and (%11, ¢ (%741)) make with the real
axis, increase with i'\’There{ore, if 9 (2) 18 convex in (0, oo}, and
¢ () » oo with #,«¢he\relation fe Ly involves the integrability of f.

Let f(f), pAEYy be two functions defined for a <t < 6, and
such that « SO < B, 1) >0, p(t) £ 0. Let o (1) be a convex

function defined for o < # < B. Jensen’s inequality for integrals,
viz. )"
2 o b b '
o frovmal  [epp@a
N R S
A~ P L,
‘ [ pyas [ ptya
a a

is a ai'mpl:e corollary of (1) it F(¥) and p(#) are continnous and
(g, ) is finite. In fact, if a=f,<f <. <t,=b6 is a subdivision

of (ah), 8=t - L, Pr=p ()8, X: = f(£), the inequality (1)
tends to (2), provided that Max 3,0, To prove {2) in the most

% Jemsen [ij.
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general ease is not a difficult task, but for the sake of brevity

we content ourselves with the case which we shall actually need

later, viz. f >0, ¢ (#) non-negative and increasing with &, (a, 8)

finite. Since any bounded f is the limit of a uniformly bounded

sequence of eontinuous funetions f,, 1) we obtain (2) for f and p

bounded. Similarly, for f/ and p integrable, we have f = lim f,,

p=1limp,, where each f, and p, is bounded and fp < fopen,
Pn < Patr; an application of Lebesgue’s theorem on the integration

of menotonic sequences yields the desired result. (\)

4341, A neeessary and sufficient rondition that a function ¥ {(x) defmea‘ af
every point of an interval a < x < p, — o= <l o < < o=, should be muyex is that
¥ (X)) showld be the indefinite integral of a function non- decreasmg Jand integrable
ovar {m, Y, 1. e. <

www_dbr‘aLi'libl'ary.org.in

{1; i) =y(a}4 [E (t)df, where E(f)<]E (t,,l wor f =7t

Suppose first that the condition (1) is satis\éd Since Instead of (= §)
we may consider an arbitrary subinterval &Y%, B), it is sufficiest to show
that, il 0<C6<l1, x=(1—%a- 53 the function y satisfies the inequality
Ayl (1 —8) ¢ (e} -+ 0y (8). Without rea‘! Toss of generality we may zssume
that « =0, y{(a) =40, so that the meqqahty which we have to prove is

53 N\ 53
fi(f)dtaﬁfé(t)zﬁ or (1-—9)fa(r)a: efa(s)m

Now it is suffiefent 10\O¢Nerve that the lefi-hand side of the last inequality
iz at most eqoal to, and the rtight-haod side is mot less than, the number
B1—93E0p. R4

To prove, the second half of the theorem let R{x, Ay denote the ratia
frlix+n -;(.(x) th, h=0. From the convexity of y it follows that

@ % Rix,—B<R(xh), (3) Ri{nB)<R(xhk)

valded that 0<% O« k< M, acd that the pointe x, x—4k, x4k belong
w\ﬁﬁ ). From (3} we aee that R{x,#) tends to a definite limit za A--0,
ad in virtue of (2), thia limit, which is the right-hand derivative D1 y(x),
is"finite for «<x< B, Similarly we prove that R{x,—h)< Rix,—Hh) for
O<li<hy, and that the left-hand darivative Dy (x) exista and Is finite
for a<Cx <CB. It lollows from (2) that

E5] : D™y () < DTy (2

1) Let F(x) be the indefinite integral of f(x). Wa may put e g
Sy =n[F(x 4+ 1im)— F (2]
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Let now e<lx<x <8 and let #>>0, >0, b+ k=x —x so that
x4-h=2x —k We have then DV y(x} < R(x, B < R(x, —&) = D™ z(x)
From thie and from the inequalities (4} we obtain that, for x<C 3,

@ D™ <D e, DY )< DY xiny,

i. o. the derivatives D™ % (x) and D*4{x) are non-decressing. Since fbe st
of psints where a nan-Qecreasing funeiion is discontinuwous is 2t moet entl-
merable, we infer from (4) and (5) that the set of points where y'(x) does
not exist is &t most enumerable. The derivative ¥'(x) is unifoimly bound

in every interval (=’,§') completely interior to (e,f). Henece the eguabion\(d)
is certainly true if we replace a by &', £() by ¥(f) and suppose thai a2
Making «' —»a, 8 = 6, and rememberiug that x {{} is continuous, we ‘dbtain the
formmla {1}, wlih £ () = ¥'{#). Te show that ¥'(fy is mtegrab]e we “need only
observe that it is of constast sign in the neighbourhoogd® {of the points 2

and §, go that the existence of improper integrals involvea{the {ntegrability
in the sense of Lebesgne. This compietes the proof, N\

w\&.‘l’éﬁbfﬂﬁmﬁy‘&%%énan arbitrary function ‘won-vegative, non-decrea-
sing, tending to == with x, and venishing at the/@riffin. The carve y=px)
may possess discontinuitiea and siretches of invariability. The inverse func-
tion x=+{y) has the same propertics, and\js ome valued except for the
values which correspond to the strefches af.dhvariabifity of ¢(x). If p(x} ie
constant and has a valne 3, for a<x<B. we assign to 4({y,) any value from
the interval (=, 3). Since the nnmbﬁr 4t the stretches of invariability ie at
moet enumera™e, our choice has, gu fufluence upon the values of the integral
D(x} of ${x), and it is easy tosee that the Young inequality 4.11{1} holds
true in this alightly more gaf®eml case,

From the theorem prbved in §4.141 it follows that every function @{x}
which is non-negative{ ‘convex, and sriisfies the relations @ (@) =0 and
D (x}ix > as x =, be considered as a Yoang fomction. More precisely
to every such funétien & (x) corresponds another funetion ¥ (x) with similar
properties, and { \snch that ab < P (&) - ¥ (4 for every a >0, b >0. It iz
sufficient to {take for ¥ (x) the integral of the funetion & {x) inverse to thé
fanction T(xi\t Pix). SBince @ {x)x > with x, it is easy to see that vix}
and ‘1' ) a’se unbovnded as xr oo,

415 M Lf] and %,ff] as functions of z. A tunction

v{-\(u} =0 will be culled a multiplicatively convex function if, for

Nevery ¢, 0, £,0, £,+f,=1, we have wl )+ by aay) < (e, ) Y {ay)-
1t is the same thing as to say that log ¢ (#) is convex.

Given a function f(x), the expression U [f) is a non-decreasing

function of «. A f] and ME[f | are multiplicatively convex functions
of a (a>0)Y).

Y Haunsdorcff (2]



[4.18] A theorem of Young, 1

Substituting | f|* for £, 1 for g, in the second formula 4.12(1),
and dividing both sides by #—a, we obtain that U [f] < %,,[f]
for 7> 1. That the result is not true for M, is easily seen from
the example a =0, =2, f(x) = 1.

To prove the second part of the theorem, lot « = o, ¢, + 1,8,
w >0, £:>> 0, ¢, + ¢, = 1. Replacing the integrand | f|* by |f[% | f %k,
in Mi,, and applying Hélder’s inequality with r = 1/¢, r' = 1/¢,, wé\
find: W2 . M=4 M=h, Dividing both sides by & — a, we optain

1 Gy 2\
that A% <7 =4 sx:rfs. £\

4.16. A theorem of Young. Let f(x) and-5(3) be two
functicas of period 2, belonging to L7(0, 2r) and £¢(0, 2x) respec-
tively, and let www.dbradlibrary. org.in

m N
o) h(xy= [ fox+t) g B
by 5‘ v }

Then, if 1/p -+ 1/g> 1, and 1/r = 1pid-1/g — 1, the function h(x) is
of the class L and, moreover, +\"

™

@ W, [h] 5 M F] Tlel:

We may supposeifh\at f>0,8 >0, Let »,p. v be any three
positive numbers swéhnthat 1/A+1/n+1v=1. Writing f{x+2)g()
in the form fo* @y peitie—tR) g90/e—UN and applying Holder's in-
equality with H{é’éxponents Ao, v (§ 4.121), we see that & (x) does
not exceed .\

'® M

[}}p(x;}& )"gq(f) dt] B [‘;‘}p piiip—1/h) (x4 f df] e [.fgqv(h@—lﬁ.) @® tft] jx’\f
1] ’ '.; H it

£\
Tf{We suppose that 1/p — 1/h = 1/n, 1/g—1/A =1y, X =r, the con-
\‘liiion 124 1e+1/y=1 involves 1/p+1/g—1/r=1. The last
two factors in the product are equal to WZH[f1%i7"[g], and the
result foltows from the formula

b i

[ an{] 1+ 1 ey at) = 93171 Wit

(§ 212). We add two remsrks:
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(i) The inequality (2) may be stated in a slightly different
form. If weput p=1/(1—a), g=1§1 —§), 0<a=11, 0 < f<l,
then M , {A} < M, [f] M . [g), where y=a +{ <1

1y 1—az 1§

(ii) Let ns change the definition of % (x) slightly. introdu-
cing the factor 1/2r into the right-hand side of (1) (simiarly 28
in § 2.11). We obtain, then, that %, [#] <%, [f] ¥ el

1—1 I-a - N\
417, A theorem ol Hardy. ief r>1, s<r—1, f()&)a«ﬂ

0<x<eo, F(x)= ff dt, If frix)x° is mtegrabte o'ver (T] oo}, s@
is {F(x)}/x} x*, and \

(hy o 042 {‘F@} WEL (], f 6 S dx).

{ri)ir
Stunce ff s/ st gt < (ff' 1* dt} ~(’ t*”{’—” dt) , We 2£8

that £ is mtegrable over any tinite idterval and that F(x)=o(x¢ =)

aa x+0, Applying asimilar argumgnt to the integral defining F(x)—F&)
we obtain that F(x)— F(§)<iéev—1—97 if x>£ and ¢=E(s) is large

enough. Hence F(x)= {FLx}—F(a;)HF(E)<-§sx(’—1*’1f’+0(1)<axf”1*”“'
for x large, and, smce sD\D is arbitrary, F(x)=o(x{"1—%") ag x oo
Let 0 < a< b4 ntegrating by parts, writing Fr— fx—r+ =

= fxrE- Fret x"“'““”r ) and applying Hélder’s inequality, we obtain
b [ 4 .
F \ Frs—r+11 r iir Fir 1y

b X dx T ~ rx5d —1xSdxy

a[%x} \h“'7 L~S*1]+r-s“ fo x} {[(x) }
5\

Dividifig\Both sides by the last factor on the right, and making
aa(i,‘ — o3, we obtain (1).

«‘..\’ 4.2, Mean convergenee. Let f,{x), f,(x),.. be a sequence
\ of functions belonging 1o a class L7(a, &), r > 0. If there exists
a function f(x) € L7(a, 8) such that D,{f — fu; a, b} =0 as n >0,
we say that {f,(x)} converges in mean, to F{x), with index r. The
following theovem is of fundamental importance.

) Bee Hardy, Littlewood, and P Glya, !nequalst:es Chapter IX,
where various extensions of this theorsm are given.
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A necessary and sufficlent condition that {f«x)}, fn ¢ I%a,b),
t= 1, should converge in mean, with index r, to a function
fixye Li{a, B), is that W[ fu—fa] should tend fo O as m and n tend
to infinity ).

The necessity of the condition is obvious, since, by Minkow-
ski’s inequality, the relations M f—fa]>0 and I, [f—f.]-0
inveive M for — Fa] << MASF — Ful + DL[f— fa] » 0. A

The following remark will be useful in the proof of the
sufficiency of the condition. )

(Y If {ualx)}, @ < x < b, is a sequence of rmn-neggzﬁ'{k Sfune-
tions, and if L+ L+ .. < oo, where I, denotes the integral of u,
over (a, 8, then u(xX)+u,(x)+... converges at‘m t etexywhere to a
Jinite function, ) ST dor aﬁ #Ty eremn

In fact, if the series diverged to 4 oo in R set of positive
mesure, then, by Lebesgune’s theorem on the\\mtegratwn of mono-
tonic sequences, we should have /, 4 f, -%\ = oo,

We will now prove that

iy If M fn—F]>0 as mnhos, we can find a subsequence
ad of {fa} which converges aimost everywhere to a finite func-
tion f{x).

Let & = Max | fu f,,] for m oz, nzi Since ,-0, we
have ¢, 4 e, 4 .. <oo 1f\{m,} increases sufficiently rapidly. By
Halder's ineguality, \\

f'lf”k —{”k-j[-r_i dx < (b - a)l,fr‘ mf{f% _-fﬂg+1] < sﬂ;z(b - a)lf’”

and so, in "v\iil?tﬁe of (i), the series [fr, |+ {fa,—fo, |+ |fo, —fa. |+ ...
converges almost everywhere. The fanction f(x)= fa,+(fa,—fn)+..=
= lim f;,;bc exists aimost everywhere.

\Returnmg to the proof of the theorem, we ohserve that, if
Prxn, then M fr — — fug] <tm. Applying Fatou’s well-known lemma?),
A N

Y Fischer[l], F.Riesz [1], [2]. }
Y Fatows lemma may be formuiated as fol]ows if g0 =0, k=1,2,.

“d £4(x)—+ g (x) almost everywhere in (4, b), then /‘gk dx < A, £=1,2,..., invelves
fga‘xg,q in particolar, g(x) i mtegrabla over (@, ). See e. g. Saks.

Théone de Uintégrale, p. 84.
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we obtain that W,[fm —f} < tm Thence we conclude that fel” and

that MLf — fa] » 0 as m » 0. This completes the proof. We add
4 few remarks.

(2) In the proof we tacitly assumed that &—a=i~, but the
argoment holds even when b — a = o, since (1) subsists if (@, ]
is replaced by any finite subiaterval (=, B) of (g, #).

{b) The function f(x), the existence of which asserts the\
theorem, is determined uniquely. In fact, if WS ~ fu] - Qaand
Mg — fal >0 as s -> oo, then, by Minkowski's ing iaality,
WA f— &) <MAF—Fd + M g} 0, 1. e MIF— g]=90, f(H=g (x)

(£} We proved the theorem for the case 7 > i hecause this
case is the most interesting in applications, but thé-resoil holds
also for O Sifstlibrahy.dheiproot we use, instead’ of Minkows}?:’s
inequality, the first inequality in 4.13(3). In’@r:ticular, to establish
the existenve of f(x), we observe that {fo)+ |fr, — fo! + ) =
LT+ fa, — fa ' 4 ..., and that, if w@\integrate the right-hand

side of this inequality over {a,b), wé :obtain a eonvergent series,
provided that en, + e+ .. <<ooo W

AN

o\

4.21. The Riesz-Fischer theorem. Let {p,(x)} be a system
of tunctions, orthogonal afid normal in {g,8). We saw in § 1.61
that, if ¢, are the Fourier coefficients of a function fe L’ with
respect 10 {9a}, the\' éries ¢ + c1 4 .. converges. The converse
theorem, due to Riesz and Fischer, is oune of the most important
athievements ?{’ihe Lebesgue theory of integration,

Let %,»pi,,gb?,... ke an arbitrary system of functions, erthogonal
and normalin (a, b), and let ¢, ¢, ¢, ... be an arbifrary sequence
of aumbers such that ¢4 ¢ +ci+ ..< oc. Then there exists a
funsf;‘.gm fel¥a, b) such that the Fourier coefficient of f with respect

ongn is ¢uy, n =0, 1,2, .., and, moreover,
"\ oo

b Y
4

& o #
(1 [frax= 3 ¢, f(f—Sn)gdx-J»O as n - oo,
; =1 a

where S, denotes the n-th partial sum of the series egpp+cop +... ')

) Fischer (], F. Riesz {1); nee alzo W. K. and G. €. Youang [AL
where several aiternative proofa are given, and Kaezmarz 2l
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From the equation

# RS
[ (Snpr — Sa)?dx = D ¢
a F=n41
we see that Mi[s, —s5,]->0 as m,# - oo, Ia virtue of the last
theorem, there is a function fe £? such that M,[f —s.] »0 as
n-oo. If n>j, we have ¢

2 ? . O\
@) o= | s dx = ff%‘ dx + f(sn ~f)edx. AN\
a '] Q : N

By Hélder’s inequality, the last term on the right dges not
exceed Myls, — f] Mylgy] = My, — f] in absolute velze. Hence,
making #-> =5, we conclude from (2) that wm‘s.clhﬁg\ﬁtihri@ewwgﬁn
fictent of f with respect to p;, and it remaios ‘Only to prove the
first equation in (1). AN

In virtue of 4.2(ii), there exists a sequence {5,,(x)} converging to
f(x) almost everywhere. Since Wi [} =GPt €1, ettt
2n application of Fatow's lemma gives Milf]1 <o +cl + i+ ..,
and this, together with Bessel’s ipequality ¢+ ci + €2+ ... << M2Lf],
yields the desired result. N

4.22, Corollaries.m('g A system {z.{x)}, orthogenal and
rormal in an interval.g)b), is said to be closed in this interval
if, for any function.f ea, b), we have the Parseval relation

s\ 8 -
{1 A [rax=3e,
o\ et H==it

where ¢, 6,(.) are the Fourier coefficients of f with respect to {$.}.
In the dOlg}ln of functions of the class L¥ the notions of a closed
and of e\ complete system are equivalent. That every closed system
Is..complete, is obvious. To prove the converse assertion let
‘}\C;‘» .. be the Fourler coefficients of a function fe¢ L. Bince
€~ € 4 ... < oo, there is, by the Riesz-Fischer theorem, a g¢ Lt
with Fourier coefficients ¢n, and such that Wilg] = ci 4 ¢ + ...
Since f and g have the same Fourier coefficients, and {p.} is
tomplete, we have /=g, and the equation (1) follows.

(i) We know that the trigonometrical system is complete
{§ 1.5). Therefore, it an, b, denote the Fourier coefficients of a
function 7 ¢ L2, and ¢, the complex eoefficients of f, we have the
Parseval equations
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i =
1 y L] hd a 1 i g
(22) Tff’dx=%ﬂ6+§(ai+bi), @b) 5 [ frde= X leal
(LS =1 B M=u—o
which differ oaly in notation. It may, however, be observed
that they can be obtained iadependently of the Riesz-Fischer
theorem. In view of Bessel’s inequality, it is only the inverse
inequality which demands a proof. Let a.(x} be the Fejér sums,
for the funetion f; o, being a trigonometrical polynomial, we have
{ o 2 % 2 - o\:\
= fcidxz%a3+2(a§+bi>(1~~-—) <ial+ I (@B
s k=l n+1 F=i 4 ;

AN

and, sinee a,{x) - f (¥} almost everywhere, it is suﬁfip;en‘t' to apply
Fatou’s lemma, ~N

bl abraelibEtMETEAR for 2 in the formulav(2b), we obiain
a formula which holds also for f compléx» To show this, let
F=fi+tif., and let ¢, ch, ¢! be the complek Fourier costficients
of fifufe I 2k =ah—ib, 2= a7 then |fi¥=1/, 241fh
Cu = Co b del, 1eni® = ekt 4 leh it 4 2 (bl — ali &), Since the last
term on the right is an odd function of 7, we obtain that

oo oa

Tam I
Z el 3 GabHan L [(hr 1A x40

_ Qi) ¥ f(x) is pertodic and belongs to L*(0,27), the function
f(x} defined by thg\fgrmuza

,’ -

@) Foy=< et =flet) lim{ _ Mlﬁﬂiﬂdtl
O 2tgle hsel @y 2tp di

exists alsz}ewrywkere and belongs to L2 1), Moreover S{f]= 31f1
That :{\I_f] is the Fourier series of a function g ¢ L* follows from
Besg{el’s inequality and the Riesz-Fischer theorem. Consequentiy
m:tl{9~ first arithmetic means E;n(x;f) of @[f] converge almost
(()everywhere. Thence follows the existence of f(x) (§ 332) and
since, at almost every point, a.(x,f) > g (x), oa(x; [} = F (x), We

obtain that g=Ff This completes the proof. We may add that,
by Parseval’s relaticon,

n
1 . T
4 = tae 1.8, 1V =
@ ) dx-xl-au-l-:_:affzdx.

% Lwsin {1}
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4.28. The result (ili) obiained in the preceding seciion will be gene-
ralized in Chapter VI, where it will be shown that the integral 4.22(3)
exists elmoal everywhere for any integrable f, Here we will make a few
remarks of a diiferent character.

The exiatznece of f(x) is not trivial even when f(x) is continuons. The
convergence of this integral is due not te the semallness of f(x -8 — f{x—1¢
for small £, but to the interference of positive and pegative values, for, as
we will show, there exist confinuons functions f such that the integral

N

RO
diverges at every pointl). It will slightly simplily the notation if we cpnslder
functions f of period ! and replace the upper limit of integration % by 1in

et — fre—p)]
() uf ) a4t

7

the integral {1}, We begin by proving the following lemma. AN

Let gy, where | g (x)| <1, (g (%) << 1, be a function BFi dbi. and such.

' el ; " y LOrEin
thet for no valae of x the difference g{x 4 u) — g (% — ). vﬁ%&lﬁés et
mu¥. Then, fuor n=12,3,.., we have

' 1 Y,
/ lglnxtat—g (ux—rt): 4y ~ cyogn, f Ig(nx+rsz\~:g~(nx—m}| dt< C,togn,
L P &

4
X 3

where the constants C and €, are independent ofm )
Let nx=y, at=u In virtze of th? speriodicity of g, the firat integral
takes the form oA
i N 1
| zgw+u)—gu—g)r(m+-»+;3:nf1)”“~>

T
= 1 ,_1~_ } — — iy | du,
.f[2+.,.<\(1]?|g(y+a) 2(y—u)ldu

The first factor on the{right exceeds a multiple of logn and the second, as a
continuous, pericdic, Ghd mon-vanishing fusction of ¥, is bounded from below
by a positive number,” This gives the first part of the Jlemma., Similarly we
obtain the ﬁeccnﬁ\)’ért, cheerving that the integral of g (y+u)—gly—u)fu
Over {0, 1) dods nat exceed 2.

Leh'lé'a\ oW put

(2 \‘ N flx) =,f§; a, £ (i, %),
h

o~ { W . .
) x?lf‘) the soefficients a,>0 and the integers 7, <(hy<C.. Will be defined in
4 moment, The integral of |f (x 3 £) — f (x — #) \j¢ over (1/%,, 1) is not less than

—_——

- 1 Fer the divergence almost everywhere of this integral, and ofs th.e

megrals {4) below, see Lusjin [1}, 182, Tilehmarsh {2], Hardy sod Li-
®%0od ). For the general result see Kaezmarz [3), [4].

For example, we may take for the curve y=g(x}, 0L x<l1 the

b .
"oken line passing trough the points (0,0), (/s 72, ()
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! g0 x4 b0 =gl x—ht)
a, |

1

td

il 1 Al — £ (X — 1)
& _(E+Z an fg(’H—f )gg'(! gy caytog b -
AT pe gl L
el o
—C 3a, logi,—2logh, ¥ a,
n=1 n=y4lI
sinee | g, x+ R, — gl x—i f) |2 U we put a,=1nl v, —"f”@" }he

right-hand side of {3) divided by ! tends to Clogz“a() aurl th\s proves
that {1) diverges everywhere.

It is interesting to observe thak the integrals \ N
e ) T ~\
e dbgalibrany ol [(Gx 1A,
. t o R\
oD
apparantly similar to the integrai®4.22(3), may digefge everywhere for f con-

tinncus. The proof, although analogous to thal iven above, iz slightiy less
simple. Ses alsa § 3.8.5.

4.8, We have proved that ﬂ)’emecessary and sufficient con-
dition that numbers a,, a,, bL, «Bhould be the Foutier eoefficients
of a function fei? is that b byl 4 (ai + 8 + ... should converge.
The question arises if apything so simple can be proved for the
classes L7 with » == 2, 'Bbe answer is negative and it is just this
answer which mak s\the Riesz-Fischer theorem and the Parseval
relation such an.&‘cephona‘l tool of investigation. Postponing
to a later chapierthe discussion of some partial results which
may be obtatned in this direction, we will consider here criterid
of a dlffere’ﬁ* kind, involving the Cesdro or Abel means of the
series onsadered

Beésldes the classes L,, L introduced in § 4.1 we shail consider

the® cLasses B of bounded and C of continuous, periodic functions.
If\a trigonometrical series

e
(1) fa, + El(ﬂn ¢os HE 4 b, sinnx) = Y g, ™
n=

F=—a

1S}, with f belonging to LJ, B or C, we shall say that the
series (1) itself belongs to L,, B, C respectively. By S we shall
denote the class of Fonner-Stleltjes series,

The first arithmetic means of the series (1) will be deno-
ted by aa{x).

is a &
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431. Ciasses B and C. A wnecessary and sufficient con-
dition that the series 4.8(1) should belong to C is the uniform con-
vergence of ihe sequence {ss(x)}. The mnecessity is nothing else
but Fejér's theorem. To prove the sufficiency, we observe that,
for #>|k', we have

{2 (.1 LE Cx = 1 }ﬂa (x)ye* dx
n+1)* 2ri " '
As 7+ oo, the jeft-hand side tends to ¢k, and the expression on
the right to the Fourier coefficient of the function f(x)=lim sf&)-

A necessary and sufficlent condition that 43(1) should, belong
t0 B, is the existence of a constant K such that |a(x},< Kfor all x
and 5, The necessity was proved in § 3.22,withaK.€aHal4a, 1he in
essential upper bound of |f| Conversely, if {3,] < K{We obtain that

i e n :.\\:k 2
K> fadx=tai+ e+ T ) >
"G A= X

n4+1

"

v 2

>y + B+ o (N )
where v> 0 is any fixed integerylhﬁs than 7. Making n- oo we
see that 1 ai4(al + b)) + ...+ (619 62) < 2K* Binee v is arbitrary,
the sepieg 1}&3 + {a}"—i—bf) -]—'.:T converges, and 50 4.3(1) is a &{f]
with fe 12 Therefore o4(¥)-f(x) almost everywhere, and the
inequalities !o.(x) << K\mply that | (x)|< K almost everywhere.

432, The ‘efl'aé;s S. A necessary and sufficient condition that
the series 4.3.(W)\should belong to S is that W[s)] <V, where V
i ¢ finite constant independent of n').

It 43Q)"is a S [dF], then

’ Y = 22-
(B =L [ Kyx— 1 dF ), 1o} < T [ Kx =01 4P O]

{n egrating this inequality with respect to x, and interchanging
he order of integration on the right?), we find that

——

I) Yo [V g [8].
D) |dF ()| means the same as 4V (), where V() Is the total variation
o £ over (0, 5.
" Since K, (1) is continuous, the justification of this procedure is imme-
Bumg ;::i way replace the integral of ig,(x) by approximate Riemannian
interchange the order of summation and integration.

diate:
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an am 23-.
1 _/'idF(tﬂfKn(x-t)dx=_/ WF () =V,

i q o u
where V is the total variation of F over (0, 2x). For ise second
part of the theorem we need the following important lemma.

4321, Given a sequence of fanctions (Fa.(x)}), a <. x < b, of
uniformly bounded variation, either there exists a uniformiy boun
ded subsequence {Fn(x)} converging everywhere to a function Fi®)

of bonnded wariation, or {{ Fi{x){} diverges uniformly to g2 05
n-ool), X

M [s4] <

"N
Suppose first that all the functions F, are non-negative, non-
decreasing and less than a constant V. Let B&Yy.) be the
sequence consisting of all the rational points £rom (2, b) and of
the peints. dbrsulifRXY A 818ing bounded, we{gan find a sequ-
ence {S)p, pi, ... ph, ... of indices, such t{at {Fpi(r,)} converges.

Rejecting the first term p{, we find f ’m\the remajning indices
P2, D3, ... @ subsequence (Sy) g, pi, ... sPa, ). such that {Fyelry)} con-
verges. Rejecting pi, we choose among the vest a subsequence
(Sg) pl, s .. such that {Fpi(fz}}"cbnverges and so on. The se-

quence g, pi, pi, .- being, from Some place onwards, a subsequence
of every S, we see that, {Ppﬁ(x)} converges, at least for raticnal %,

to a limit F(x), non-décreasing over the set where it exisis.
For any % il{Q"io’r to (g, &) put d (x} = lim F{H)— lim F (1)

r—rx4-0 rpx—0
reR Since for\any system x,, X;, .., X, we have d{x)-+ ..t
+d{x) < YAt Tollows that the number of the points x where
d (x) » € 0> is finite, Let Z be the at most enumerable set 0O
points fof "which 4(x) >0, We will prove that, for any xe¢Z
lim Q’g@x’) exists. In faet, given an arbitrary % >0 and an x ¢ Z
xsé a,b, we can find tweo rational peints < x</", such tha
ALFE) ~FYy<n Sines F(r) < Fp(x) < F(r"), where th
) extreme terms tend to F ("), F(r'") as k- oo, we see that th
oseillation of {pr(x)} does not exceed v, i e. the sequence con

verges,

Let D be the set of points whers {Fpiz(x)} diverges; [} is at mos
enumerable. Repealiog with D the same argument as with £, w

By Helly [11.
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find a subsequence {m} of {p}} such that {Fy(%)} converges in D,
i, e, everywhare in (a, §). :

In the general case we put Fu(X) = Fal@) + Palx) — No(x),
where P.{x} and N.(£) denote the positive and negative variations
of Fux) — (o). Let us suppose that we can find a sequence
{m} such that {F, (a)} converges to a finite limit. From {m} we
choose a subseguence {m}} such ihat {Pui{%)} converges, and from
{mi} a subseguence {m} such that {Ny,(x)}, and therefore {F”a(’”lk
converges. That F(x) =lim F,,(x) is of bounded variation, follows
from the faci that F(x)=Ilim Fn(a)+lim P (x)—lim N (%), where
the last two terms are non-decreasing and bounded funéiidus of x.

If our assumption concerning {Fa(a)} does not{hold, then
| Fa(@)| - o<. Bince the oscillations of the funetioBEMEL(thrary ang-in
formly bounded, it is easy to see that {| F.(x)i} diverges uniformly
to + oo as 2+ oo, This completes the proot’nfthe lemma.

The foliswing remark will be usefulJater. If the total va-
Hations Pr(8) -+ NA(6) of the functions Fi g0 not exceed a number
W, the same is true for the total vyx:iati'on of F

4322, Suppose now, in the‘ease of Theorem 4.32, the con-
dition M [s,] <. V satisfied. LefoFa(x) be the integral of ou(f) over
(0,x). The functions Fn(x)are of uniformly bounded veariation
over (0, 2x). Since Fu(0) =0,'n=1,2,..., {| Fx{x}|} cannot diverge
to - oo and so there x‘@.tﬁ a sequence {F.(x)} uaiformly boun-
dod and converging ‘eXrywhere to a function F(x) of bounded
variation. Let 1;22}%|. Inlegrating by parts, and making j - oo,
we oblain N

kO 1 7 1 i
(1-* ;{_‘ii)& = 2—‘“}[ Ony o—itx =E F,,J,{?z) -+ -2-:0f Fn; £—i dx,
'Q}; Ficd
.~\’~ 1 %

Fiyd

NS L= F(2n Femide=— | e~ g4F (x)

<N & o ( )+2ﬁi|/ 230'[ L]
for k=0,41, .., so that 4.3(1) is & [4F]. We complete the theo-
T™®m by a few remarks.

4328, If 43(1) is a S [dF), where F(x)=} [F (x-+0)}+F (x—0)]

for every, x ang if the total wariation of F over (0,2z) is V,
:{'f“ Mo, ) »V as nsee It has been proved in § 4.82 that
{{m .]"E (%] < V, and it remains only to show that the assumption
2 M s] < W< V leads to a contradiction.
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In fact, let {m;)} be such that M [cr,,,}.] < W. The sequence
{Fu} considered in the preceding section may, plainly, bs chosenr
from {F,,,}.} and, by the final remark of § 4.321, the total variation
of F(x}=lim Fu(x) would not exceed W, Without loes of gene-
rality we may assume that Fly =4 [Fix+0) + Fix -0}, for if
we replace F(x) by ;-[F,‘(x+0)—|-F,(x~O)] at every poini of
discontinuity, the total variation of the function will not ingres
ase. Since & [4F)] and S [dF,] have the same coefficients, it ‘fol-
lows that the difference Fl(x)zF(x)—F,,(x) is equal to @ eon-
stant C at almost every point x. On the other hand{we have
Fy(x) = } [F(x + 0) + Fy(x — 0)), so that F(x)=C for cevery .
Hence the total variations of F and F, over 0, 2z). are equal,

*

cantrary to what we assumed, <

LI IEET BAD sufficient condithan™that 4.31) should
be a & [dF| with F non-decreasing is o,{x) 20n=01,2, ..

The necessity follows from the fi st formula 4.32(1) since
K: > 0. Conversely, if s,(x) > 0, theMunctions F.(x) considered
in § 4322 are non-decreasing, and the same is true for Fix)=
=lim Fnj(x).

~

4.325. A necessary and sufficient condition that 4.3(1) should
be the Fourier series of q JiAction of bounded wvariotion is that
Wi[a7] = O(1). This theorefinis equivalent to Theorem 4.32 {§2.14).

4326. Carathéodory’s theorem. Let {Fe(x)), 0 < x < 21,
be a uniformly bounded sequence of functions. If Fy(x) tends
almost everywhefeo a limijt F(x), then cf-c, as k- co, where
ck, Cay :'120,-"_-‘;1,:\.... denote the Fourjer coefficients of the functions
Filx), F{x) Aespectively. Simple examples show that, without addi-
tional equditions, the converse theorem Is fulse, and is an important
fact that this converse theorem is true when the functions Fux)
are menotonic, More precisely:

S ) Let R}, 0C x< 9% pe o Seqdence of uniformly boundeu
and non-decreasing functions, and fet ¢ be the complex Fourier coef-
ficients of Fu. If, for n = 0,£1,+2,.., we have lim Ch=2¢, as
koo, the numbers ¢, are the Fourier coefficients ef a monotonic
Sfunction F(x), and Flx) = F(x) at every point x, 0 < x < 2z, where
F(x) is continnoys .

" Carathéodory [2).
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In virtve of Theorem 4.821 there is a subseguence 1Fa} of
{Fy} converging everywhere fo a non-decreasing function F (x). It
is plain that the Fourier coefficients of F are ¢, And we
have only to show that Fa(x)-» F(x) except, perhaps, at the
set of points where F is discontinuous, Let 4, 0 Tl 2r,
be & point of continuity of F(x). Let us suppose that Fit) does
not tend to 7 (). We can then find a seguence {fu} such thaty
lim £(3) exisls and is < F(&). To fix ideas let us suppose that
lim 7 (3) = 7 (3). We can find a subsequence {F,(x)} of {Fe o}
such that lim /;{x) = G (x) exists everywhere. The Fourie’;{\coaf—
ficients of G are ¢4, and so F(x)= G (x). On the gtli‘gr hand
G @) =lim F,{§) = lim F,(§) > F (&), and, since G (x) ig”nbn-decrea-
sing and F(x) is continuous for x = £, we haxedibslibr5 (e ifin
an interval &~ x < &+ 4, B> 0, so that G (x)2F(x). This con-
tradiction shows that Fu(£) - F(3). AN

4.33. Classes L.!). Lef p(z), a}iog}e convex, non-negative,
and such that o (u) u » o as 4 oo 3, A nepessary and sufficlent con-
dition that 4.3(1) should belong to L3NS that M[e |s,] < C, where
Cis finite and independent of PN Y

We may suppose that t;f:u.)’ is non-decreasing, for ctherwise
It is sufficient to consider/{dhe function 7°(4) equal to 3 {(z) for
2 u, and to 7 (z,) for;d]k u =y, i, denoting the point where ¢
attains its minimam. T@e"classes L, and L. are plainly identical.
To pruve the nedessity of ihe condition consider the inequality

7 N\ P

27 sl <L [ Kx— 0if ) de.

¢ ..\} /

(n

By.‘jéﬂ;en’s theorem, and taking into account that the inte-
gral afithe function P = K (x — = over (0,27) is equal to 1,
wedind that
@) 9.0, < - [ g f(O)] Kalx — By dt
%
Integrating this with respect to x and iuverting the order
of integration, we find the important inequality

) Young {10}, aee also Zygmund [4].
:) It follows that ¢ is bounded in apy finite interval
} We write « i3, instead of w17, ).
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3) Mlglen]l <Miplr1],

which gives the first haif of the theorem.

A regards the second haif, the Jensen inequality « (W faz)/2myC
< Mlpfonf)/2e < C/2x implies that M fsa]l = O(1), i. 6. the series
4.3(1) is a ©[dF)] (§ 4.32). To Prove that F(x) is absoluteiy con-

&

tinuous, it is sufficient to show that the functions F,,(x):f cr,,(t)d}
1A

are uniformly absolutely continnous, i, e. that, given an ¢ }\U}tﬁere
exists a 6 > 0 such that, for any finite system S of nm-qvé.rlapping
intervals (a, b)), (a,, b,), ..., (o — @)+ (b, — ay) + ... €9 we have

(1) 2 Fab) — Fla)! < e, n <1, 2, ....g)'\‘\.

www . dbraulibrary.org.in

The inequality

RN
[ sl

1, A <
?(Iﬁsf’ "(x}ldx)‘g,;.*"w| <]

may be written in the Iorm.@;(Qﬁ)j&ugCiE, where z=1/]5|,
E=! lon|dx. In view of oglj’.liypothesis concerning ¢, we see

that if #—+ oo, then £ 5@

,Qind so if | S| is sufficiently small, then
£ <, }

Since the left-Wand side of (4) does not exceed £, the abso-
lute continuity of¢'E follows,

Let F'(x} <7 (x). The series 43(1) is S[f]. To show that
Jel, we onserve that o, f almost everywhere, and, applying
Fatmf’s !gm;na to the inequality W [9is (1 < C, we find that
W [2ifIRssC.

AS\ 2 corollary we obtain that @ necessary gnd sufficient
condition that 4.3(1) should belong to 17, r>1, is thot Wir[az] = O (1)7).

\'Ag “Fheorem 4.32 shows, this resylt does not hold for r — 1.

434, A necessary ang sufficient condition that 4.3(1) shouid
be a Fourier series is that M [ap —0,] 50 as m, - oo ¥,

N 1n faet, i, for fixed S, the inequality {4y ig
tiors F_, it ia also satisfied by F= |jp &
) W.H and G. C. Young f1).
n Steinhaus[2], Grose [1].

satiefied ‘by the func-

e
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Let us suppese that 4.3(1) is a $[f]. Integrating the in-
eguality

(1) @ —fwI< T [ If (et —F (9 Kby at

—T

over (0, 2x), we find that
(2) Mo f1< — f 1 (6) Ko(t) df, where 1 () = f fO)—F )N

Sinee 7 (f) is continuous and vanishes for =0, and \rhe
right-hand side of the last inequality is the n-th Fején, sum of
G at £=0, we see that M{s,—f]~0, and so SUE[hm-—c,,]
< Mom—f1+ D [5.—f] >0 88 M, 72> Ny, dbratd Jibrar

uOI‘lV&!‘Sﬂly, the condition M [ay o]0 |mplre\s M j3,) = (5{(1)
i. e. 43(1) is a ©[dF]. To show that F is absglitely continuous,
it is engugh to prove (as in § 4.33) that ‘“‘st., S1Y) is small with
1S, = (b, — a)) + (b, — a) + ..., uniformly{in n. Now M {on; ST
< W [, — 2 S]+ M [org S < M [on 23,70, 27) + Mo,; S Let v

be so large that W [0 — 3] < %g"fpr“n > v. For fixed v we have

M [a,: 51 < % e if only |SI<8 6: 2 (e). Therefore M {a.; S| <Ce for
nv, |5 <8, and this c@npletes the proof.

4,35. Suppose l\at a convex and non-negative function g {u}
satisties the condition ¢ (0)=0, so that 9 is non-decreasing.
Assuming that 43(1) belongs to L,, we may ask uader what con-
ditions M {?#Gn Zf]1-0. Starting from 4.34(1) and usiag an
argument s\n}ilar to that of § 4.34, we see that M [¢ o, —f[] +0
it only ,le» function

& 1) = f<wu+n —f () b ax.

\13 mtegrable and tends to 0 with £, This may not be true if ¢
increases too rapidly, but an insertion of the factor !, inte
curly brackets saves the sitwation: if fel, then the function
Mip {*, | flx+ & — f(x)}] is integrable and tends to O with £, In
fa"t let f=g-+h where g is bounded and W {pi#%]] <= By
Jensen’s inequality we have

') This symbol denotes the integral of .3,} over 5.
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Mg f e+ ~FON<IMEFigx+H—goMN+
+iMMp i x4+ — R (D

The last term on the right does not exceed '/, M s k(x4 1) ]+
+ Y, M [p1£1]< ¢/2, and, since the preceding term tends to O, 'y

the left-hand side is less than ¢ for i¢' sufficiently small

At the same time we have proved that, if the series 4.3(IN

is a if] with fel, where v (u} is convex, non-mrgafit.'e,\ﬂﬂd
g (0) = 0, then K \“}
Wz (e f— ']~ 0 as n» oo, O

e

In particalar, if /€ L, r > 1, then MEf — o5 > 0%, /o
\.

. : o\

438 Al HAGANE 4] far we have WwOcked with Fejér's
kernel. The essential properly of this kernel, viz. positiveness,
is shared by some other kernels, in glabticular by Poisson'’s
kernel. Therefore all our results renjain“true for Abel’s method
of summation, which, as we know, hasa very important fuoction-
theoretic significance. Since thf;‘fp;i:oofs are esentially the same
as before *), we content ourselvey with stating the resalts ). By

f(r, ) we mean the harmoniefunction earresponding to the series
4.3(1) ’

(i) A necessary janhd sufficient condifion that 4.3(1) should
belong to C is that(firyx) should converge uniformly as r-»1; a ne-
cessary and sufficient condition that 4.3(1) should belong to B, is
that f(r, x) showhd be bounded for O < r <1, 0 < x < 2.

(ii) Atée}essary and sufficient condition that f(r,x) shonld
satisfy a.félation

\“ = s
N sl 2= e,
e 22 1—2reos{f—x)+r?
RN
\"“;-zimerg F is of bounded variation, is that % [f(r, x)] = O(1) as r—~ 1.
If V is the total variation of F over (0,2%), and if 2F{x)=F(x+0+

) From our hypothesis concerning v it follows that, in any finite in-
terval 0= u< g, we bhave v{0) < Mu, with M = M (a).

n W.H and G.C. Young f1].

) That in Abel's method the variable changes continuousiy le quite
immaterig!, since ;\‘e may cohsider any séqueznce {rn}» tending to 1.

') See also: Evanps, The logarithmic polential, Fichtenholz {1].

*F. Riesz [10),
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+ Fl{x—0) for every x, then M[f(r,x))>V as ¢r>1. F is non-
decreasing if and only if f(r, x) = 0.

{iit) Let ¢ (4} satisfy the hypothesis of Theorem 4.33. Then
a pecessary and sufficient condition that 4.3(1) should belong to L,
is that M e | f(r,x)]=0(1) as r>1.

i 4.3(1) is a S[f] with fe Loy then Mg {Y, | f(x)—f{r,x)[} >0

as ¥+ 1. If felr, r=1, then M [f(xy—f(r,x)} 0. N
(v The series 4.3(1) is a Fourier series if and only If
WS %) —flp, x)] >0 as r,p—1. )

4.37. (C %) means. Most of the results remain truegalthough
some inequalities become less precise, for guasi-pesitivéikernels,
in particular for the (C, k) kernels, > 0. Lethdbradlidenglerthe
integral of | Ki(#)!/s over (0, 27), and  =2% tha(lipper bound of
6 n=1,2 ... We quote the following theoréms, the proofs of
which fellow immediately. \\

(i) If Mo a2 = O(1), then the sérfés 43(1) belongs to Ly.
if 43(1} 5 a E[f} with fele, thert\It [<p|):"1 op|| = O(1), and
Mig{ 57 ~ f1/43}] =o(1). In particalar, a necessary and sufficient
condition that 4.3(1) should belong Jfo L, r>1, is that M, [or]=0(1).
If4.8(1) is a S[f] with fe L', €51, then M f— o4 > 0 as n - co.

() A necessary and ~suffwienf condition that 4.3(1) should
belong to S is that M {c,,]a; O(1).

(iii) A necessar sgnd sufficient condition that 4.3¢1) should
belong to L is that mﬁz — 03] >0 as m, - oo,

4.38. Let)us, replace ¢, by the partial sums &, in the theo-
rems of §§ 48{-=4.35. The conditions which we obtain remain suf-
ficient (al ough a$ we shall see later, some of them are no longer
necessargh, “The proofs are sumlar, except at one peint: we can-
net usegthe fact that if 4.3(1) is a & [f], then s.(x) + f (x) almost
e"efﬁf\vhere, for such a theorem is false. But for our purposes
i i8 sufficient to assume that there exists a subsequence {S,,(x)}
of {si{x)} converging to f almost everywhere, and we shall see
in § 7.3 that this is cerlainly true if {#) increases sufficien-
tly rapidly.

4.39. In the sufficiency-parts of the theorems of §§4.31—4.38
it is enongh to assume that the conditions imposed upon s.(x},
J(r, %), or su(x), are satistied not for all indices #, r but only for
a sequence of them. The proofs require no changes.



88 Chapter IV. Clasaes of tunctions and Fourier series.

Thus if, for a sequence Ry <ty <<, {Se,) or {an,} converges
uniformly, the series 4.3(1) belongs to C. If W [5.,] == 0(1), the
series belongs to 5, ete.

This enables us to state some of the theorems given above
in a slightly different form, For example, 4 necessary and sufficient
conditlon that 4.3(1) should belong to C is that the functions ca(x)
should be uniformly continuous. The necessity follows from &he
inequality 4.33(1), which, applied to Fe+m—rm, shows, that
(& o) <3 f) (§ 2.2). Conversely, if the functions (%Y are
uniformly continuous, there exists a sequence {a,(x)}, converging
uniformly to a continuous fanction f(x} 1), and s the series is

L.:J[fisfﬁc ’\’
FRAL ) ‘éaélilrlgf’asr};‘gl‘ﬁiﬂ)ns. Let f and\g"be two functions

of the class /2, with Fourier coefficients ’a\,\\ﬁ,, and ay, &, respec-
' tively. Adding the Parseval formulae 4.22(2a) formed for f+4 g and
f— g, we obtain PAY;

in N
M [ fg dx =Y 550, 4 b1,
x g 24 =1

where the series on the right gﬂhvérges absolutely. The formula (1),
which is catled Parsevals relation for £ snd g, holds in other
cases besides the nne,,\in whieh fe 12 ge 1223, Two classes of
functions K and K, will.be called complementary classes if (1) holds
for every fe K, g‘e\KL. The series on the right need not be conver-
gent; we shall gnly suppese that it is summable by some method
of summation»\ ¥ wifl appear that the Fourier series of functions
belonging tO\’cdmplementary classes have, in some eases, much the
same, or An#logous, properties, and Parseval’s formula (1), where
f an@;}eﬁter symmetrically, is just the means to discover these
pro?er,ties in common.

PR L\ 441, The Jollowing are pairs of complementary classes: (i) L

\and Ly, where @ and ¥ gre Young's compiementary functions,
(i) L and L (r > 1), (iii) B and I, (iv) C and S. In all these
cases the series in 4.4(1) is summablz (C, 1),

') We apply here Arzela’s well-kpow
formly continuous functiona. See e, g Hobso
) The formula ia obvious if oae of the

metrical polypomial. The aeries on the right ¢
of terms,

n theorem on families of uni-
B, Theory of functions 2, 168.

functions f and g is a trigono-
ongists then of a finjte number
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Part (iv) of the theorem is to be understood in the sense
that, if a., &, are the coefficients of a S[f], fe C, and a), &, are
the coefficients of a © [dG] € S, then we have the formula 4.4(1)
with fg dx replaced by FdG. Part (iii) is 2 limiting ease (r = =)
of {ii}.

Let oa(x) be the (C, 1) means of &{f], =, the (€, 1) means
of the series in 4,4(1), and A, the difference hetween the left-hangs
side of 4.4(1) and t,. We have then

= "s. A
() ty=—[(f=on g dx, O

s
™

and, applying Holder's inequality, we see that | 4,/ does not exceed
AW {f—q,) Mielel -0 as #>co. This ‘ﬁ%‘ﬁ%ﬁlﬁgri 155 S¥8-{Be
theorem. To establish part (i), which embrabgs*{ii), we apply
Young's inequality to | 4,)/16: N

=1 nl/18 < B[ L |f ~ ol +\ﬂ}z VATAPINE

From Theorem 4.35, we obtain that llm Ap < 16z W[ Y, g Y
Let g=p"+ g" where g is a, tngonometmal polynomial and
M 27 <e ). Substllutlng, in (1), g' and g" for g, we obtain
expressions 4, and 4, such that 4. = 4, + 4. Since g' is only
a polynomial, we see fro\m Parsevﬂl’s formula for f and g' that
4:+0. On the other kand Lim 4 < 16100 [ {Yy, | g"i}] < 16%/x.
Since lim 4, < hm A lim 4% < 16¢/x, where ¢ is arbitrary, we
infer that 4, -0,

It 7 is beunded |f| < M, g integrable, then |f—o.||g|
tends to 0 althost everywhere and is majorised by the integrable
function 24} & . Applying Lebesgue’s theorem on the integration
of sequefieds, we conclude from (1) that - C.

Flnally, to prove (iv), let us replace in (1) g(x) by dG (x).
che & | 4 | does not exceed Max |f (x) — au(x)], 0 < x < 27, mal-
'tlphed by the total variation of G over (0, 2z), we have again
4 >0, provided that f is continuous.

4.411. Let g(x) be the characteristic function of a set L,
and f(x) an arbitrary integrabie funclion. Parseval’s formula
for f and g may be written in the form

') We may take for g” a (C,1) mean of €[g], with index aufficiently
large (§ 4.35).
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[fdx:—%aolﬂ-!-z /(a,.cos nx + by sin nx) de.
F =l F

Hence E[f) may be integrated term by term over any measurable

set and the resulting series is summable (C, 1) fo the integral of f

over the sef, As we shall see later, the integrated series CONVer-

ges if fel, r>1. If fe L, this is not necessarily true {§ 4.7.16).

4.42. Applying Parseval's equation 4.4(1) to the funetidns

flx+1) and g (%), we find the formula R\,
o \ h

lff(x-f-:f)g(x) dx= W03
T +47)

(l) ' o . .""\\

v@fﬁgﬂmﬁﬂf?@,}&{;eﬁ%ﬂ,) cos 1t + (ahba S0GMEL) sin af),
n= ) \:
P2\

where the series on the right is unifdemly summable (C, 1) in
each of the cases considered in Thgerem 4.41. Moreover, given
any pair of integrable functions 1.8 “the formula (1) holds, in the
(C, 1) sense, almost everywhere inofy For the proof it is sufficient
to. observe that the left-hand~&ille # (£) of (1) is an integrable
function and that the series~8ff the right is & [#] (§ 2.11).

4.43. Let cp, belthe complex Fourier coefficients of /&
The formala 4.4(1) ms\y,be written in the form

(1 o f_fg dx = qf ety (C1),
N2 p=—c= ? ‘
So far we;{]%w; considered only real functions, but the extension
of (1) _tx%lhe case of f and g complex follows immediately. Sub-

stitu;e{g (£) e~ for g (x) in (1) and let ¢; denote the Fourier
caefficients of g (x)e—n*. Sjnce €Ly =ch_p, we find that

msz 1 i . e
(2) ﬁa[ fge—int dy — 2:, thp (G1), n=0,+1,..

d
Consequently, the Fourier series of the product of two functions
fand g, fely, gely, can be obtained by formal multiplication
of €(f] and S (gl by Laurent's rule. The series defining the coef-
ficients of the product are summable (C, 1).

The theorem remains valid if feB gel.
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4.431. It is obvious that each of the inequalities

Fao aa
ial<e, 3 gi<e
impiies the absolute convergence of the series in 4.43(2). If both
the inequalities are safisfied, then Z1/g] converges absolutely.
4.432. In Theorems 4.41, 442 and 4.43 we may replace sufs
mability (C, 1) by (C, 4. £ 0. The proofs remain the samenqif .we
use the results of § 4.37. D

7'\

4.44. The problem whether summability (G, k) cal’ be re
placed by ordinary convergence is more delicate. In Chapter VII
we shall prove that the answer is positive if (e L* L,
1<y << oo ’ This theorem is rather decp? grtér%v'é{;&?ﬁﬁpdiﬁilen a
more elementary result. If s, denotes the \ith partial sum of
5[], the difference 3, between the integtal“on the left and #-th
partial sum of the series on the right ‘itb{he formula 4.4(1), may
be written in the form OO

2 % "
1 L QY
(1) By = ;f()ﬁ;—r ) & dx.

If the partial sums s.{(x) are unifermly bouaded and tend to
f(x) almoest everywherg the expression f— s.| igi tends to O
almost everywhere andyis majorised by an integrable function.
Hence 2,-0, so th"&t\’t’he series in 4.4(1) converges to the inte-
gral on the left. (Hence, reversing the réle of f and g,

if 7 (x) i ’)';z't;grabte and g(x) is of bounded variation, we have

the formular84(1), where the series on the right is convergent V).
Fromthis we deduce that, if f is integrable and periodic, (o, 3}

is a f ife interval, and g(x), o < x < B, is an arbitrary function
of peunded variation, not necessarily periodic, then

S p
N\ W) [fedx=ia, |

3

o B 8
gdx+ 3 {a | gcosnxdx-{-b,,fgsinnxdx},
fa=] z “

i. e. Fourier series may be integrated term by term after having
been muitiplied by any function of bounded variation?). In fact,
if 8~ o = 2r, this is nothing else but the previous theorem. The

) Youmg {11).
) The case g(x) =1 has been considered in § 2.621.
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case f— <2z may be reduced to the preceding one, putling
gx)=0for B<<x<<a+4 21 In the general case we hreak up
the interval {(a, #) into a finite number of intervals of length < 25,

4.483%). The last resnlt can be extended to the case of an infinite inter-

val. Without loss of generality we may assume that A N
The formulag

Foe Foe = e I3 N
{1) jfgdx:l_,gauj g(Jc)f;tx—i—‘S{a,,,fgms.l'.-'..\cxz'x-iw!:,l l g sin aang Ry
— — a=l — Y N\ ’

-y

Q

Ny .
holds true for amy integrable and periodic function f, providedy that g{x) is
Q) integrable and (i) of bounded variation over {—oo, 4 oc), JAm\faet, let us put

.
N

+=a

@ Gy = ) g(x+t 2km),
ww w dbraulibrary or g

If the series on the right converges at noma,'pbit:.t, then it converges uni-

lormly over (%, 2x). and its sum G(x) is o'f'\'Qdunded varistion {§ 2.83). On
the other hand, since <)

N

4oa W W\ K

2 [l ok [ 12 ar <o,

==t .:::' —

we 820 that the series in (2) hag' tertainly points of convergencs (§ 4.2(1).
Let. ¢, = (4}, — b)) besthe the Fourier costficients of G{x). We have

thea a formula similar tomé‘,é(l), with g replaced by (. Observing that unifor-

mly convergent series ,may be integrated term by term after having been

multiplied by any inf_&g\af}!e tuaction, and remembering that f is periodic, we
obtain from (2) thab \

2‘?.‘ < o= i Fn )
kfg dx_= ffg dx, f Glxy e fo — f £{x)e " dx,
) \Q 4 —c i

and th\iori‘nula just referred to takes the form {1}. Thia completes the proof.
\The hypothesis that g{x) js integrable over {— -, ) is, of course,
e.safep"tial for the truth of the equaticn (). However, it g, =1, coadition (i)

~ {ofithe previcus theorem may be replaced by the condition that g{x)—+0 as
\ Y X!sw In fact, let us put g%x) = g (2kn) for 2n S xS 2h 1), R=0,
2 1,.., avd let v, be the totsl variation of g{x) over (2k=, 2(k+1)r). The
function g%(x} is of bounded varlation and, since v (x) = g {x) — g*(x) does nat
exceed v, in absolute value for 2km Jx < 2(k 4 1) =, the fanction 7 (%) is inte-
grable and of bounded variation over (—o==). Let us apply the formula (1)

to the functions f and v. Bince the mean value of f over a period is equal
to 0 and g(x)-»0 with lix, 1t is easy to verify that

Y Hardy [7]. An interesting application to the theory of the Rie-
mann { fonetion will be found in Hardy (8].
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4= - Fon F.
jf}'dx=ffgdx, f-;e_'” a‘x:fge_‘""dx,
for n==--i, 42, ..., and the result follows.

4.5. Linear operations. We will now prove a series of
resaliz on linear operations!). These results will find applicatiah
in the theory of trigooometrical series. O\

4.51. Linear and metric spaces. A set £ of stbitrary
elements will be called a linear space if N

(i) There exists a commutative and associa'ti‘ie operation,
denoted by -, and called addifion, applicablay le¥esensrnaibr,ix
of elements of £. If x¢Z, yc £, then x+ y SENY

{11} There is an eclement o¢ £ (nulg.{elément) such that
X+ o0 =x for every x < F. W

(ifi} There exists a distributive ddnd associative operation,
denoted by - and called maultiplication, “applicable to every xe¢E
and apy real number =, with .tﬁje properties that 1-x = x,
0-x=o0, and that «-xe E .;:,"

In most instances it willske convenient to write ox instead
of a-x. The elements of £ will be called points.

£ will be called a'qm}rfc space if to every x ¢ £ corresponds
4 noe-negative numba{\IXIL called the norm of x, satisfying the
following conditiong

I+ U240 yexi=|alxl, |x}=0 is equivalent to x —o,

The distgnce d (x, y) of two points x,y is defined as |x — y|,
where x‘ =x+(_’ l)y We see that d(xsy) = d(.v9x)s d{x’)’){
< {520+ d (2,y), and that d(x.y) =0 if and only if x=y.

m:Wé shall say that a sequence of points x, tends to the
imiy "%, x ¢ £, and write lim x, = X, Or X, %, if |lx— x:]>0 as
n oo,

Once the distance has been defined, we may introduce various
Notions familiar to the reader from the elements of the theory
of point-sets. First of all we define the sphere S (x;,p), with
¢entre x, and radius p, as the set of points x such that d{x,x,) < p.

'} For a more detailed study we refer the reader to Banach's Opé-
rations finéaires.
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This notion enables us to introduce various sorts of point-sets:
open, closed, non-dense, everywhere dense; furthermore we may
consider sets of the first category, . e. sums of segnences of
non-dense sets, and sets of the second category, that is sets which
are not of the first category.

4.52. Funectional operations. Let us consider besides\E
another space U/ which is linear and metric, If to every poifi M ¢ E
corresponds a point x =« (x) belonging to U, we sayzthat™u (x)
is a functional operation defined in £ The Operatiqn,:a\(x) is said
to be additive it, for any points x,, x, from £, and an'yjnu’mbers ko hy,
we have u( x +Xx) =k (x)+ k1 (x,). IE % () > u(x) as
Xn = wpedbay ittty W &Mtinuous at the peidtx. If an additive
operation £ (x) is continuous at some pofqlt, it is contincous at
any other peint, i. e. is continuous everywhere. A necessary
and safficient cendition that an additi}e operatiou # {x) be con-
tinuous is the existence of a numb&r)M such that

¢y Il €xy | < M| £ ¥or every x < E.

The sufficiency of thdeondition is obvious. To prove the
necessity, let us supposg™that there exiats a sequence of points X,
such that f{u (x,) ] > .33~|I\'c,,1|.‘ Multiplying x, by a suitable constant
we may assume | a('ﬂ Xn|l=1/n. Then x.- o0, whereas the last
inequality givesh|#'(xs) ||> 1, so that u would be discontinuous at
the point 0. »

For thé\sake of brevity, operations that are continuous
and additive will be called /irear operations. The smallest num-
ber M satisfying (1) will be denoted by M, and called the modu-
lus 6f Mhe linear operation i M, may be defined as the upper
l)?fqﬁd of ||z (x)fi on the unit sphere j x!=1, It must be remem-

»~Dbered that the norms on the right and on the left in (1) may
‘have quite 2 different meaning, sinco the spaces £ and U/ may
be different. In the applications which we shall consider in this

<hapter, the space U will be the set R of all real numbers, and
fia} will be defined as |a,.

4.53. Complete spaces,
said to be compiete, it for apy se
me_'xn”_ -
It is an i

A lipear and metric space is
quence of points x, such that
O as m, 1 > o, there exists a paint x such shat || x—x,+0.
mportant property of complete spaces that they are of
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the second categery, i. e. cannot be represenied as sums of se-
quences of non-dense sets?),

4.54. Examples. Ia the examples which we consider below
the points of E are either real numbers or real functions, and in
each case addition and multiplication receive their usual interpre-
tation; the null point will be denoted by 0.

iy i E=R,|!'x!|=|x!, wehave a linear, metric, and completé™\
space.

{iiy If £ js the set of all functions x(f) defined and ‘conu-
nwous in an interval (a,8), and if || x| =Max|x()], ac.(t < b,
then £ is a linear, metric, and complete space. The relation x,-x
means that x,{{} converges Ilnlformlyﬂ@\,&éﬂrauhbfary org.in

{iify If in the previous example we supp09e that £ is the
set of all functions x (£) essentialy boundedden (z,b), and put
| x| = the essential upper bouad of |x(#)}, ; \have again a linear,
meiric, and complete space; Xxn -+ X meanq thst x.(¢} converges
uniformly to X (£) outaide a set 7, | T=0, of values of £.

(iv) Let £ be the set of all functions x (&) el”(e,b), p > 1,
and let | x| =| x|, =[x 2, &). The space is linear and metric
{§ 4.13). That it is also completedwas proved in § 42. If p=ov,
we oltain, as a special case, the space considered in (iii).

4.541. Classeg .ls:p\ Let @ and ¥ be a pair of functions com-
plementary in the.sehge of Young. We ask under what conditions
the eiass Lg(a, &) 'ri:ay be considered as a linear and metric space.
First of ail wenhate to define the norm | x|, and, if the definition
is to be usefolthe inequality | % |<eco and the integrability of
Dlx(®) \k fiust be, in some degree, equivalent. We might be inclined

to put Hx||_ D_, [] D (x) dt] where ©@_, denotes the function in-

Véx;se to ¢, but a moment’s consideration shows that this defini-
tidn, which is modelled on the case @ (u) = &', cannot be adopted.
First of all the condition || x{|=|2] [} x | would be satisfied only except-
ionally. Moreover, and here lies another difficulty, if ¥ (2} increa-
ses very rapidly, the integrability of @ [ x,(¢)|] and @ {|x,(f) |} does

Y) The proofs in the general case and in the case £ =R do not differ
easentially; ses e, g Hansdorif, Mengenlehre, 142.
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the set of points for which iim | 4(£)i] < 00, then F=F, +F 4.,
where the sets F; are closed and the sequence {!u,(x) b s unmi
formly bounded on each of them.

Let Fnn Dbe the set of points where || um(x)il < Since the
operations #, are continuous, the sets Fn. are closed, and so
are the produets F, = £, F, ... We have tm(x);, << 1 for x e FEN
Mm=1,2..,a0nd F=F, {F, 4

O\
(ii) 1If the space E of the previous lemma is compleate, “ahd
the set F of the second category (in particular, it F=B) then

there exists a sphere $ (%, 0) p>0, and & number &K“such that
fen(%)|| < K for x ¢ S(xy,p) and m = L2 ..

4
Since F= Fi+F, 4 «y 802 F is of the seeﬁx}d category, at
least one, 9latheutsisaF;,of AR, say Fr, is not hon-dense and so
there exists a sphers S (%, 8) in which F;éi'ﬁ\everywhere dense.

Bince Fy is closed, we have & (x4, p) Cif}e,_ and consequently
fenlx) | < K tor xS (X p), m=—1, 2,:.»:' /

N

Let {unx)} be a sequence of lindar operations defined in a li-
rear, metric, and complete space E, wnt let M., denote the modulus
of the operation 1, (4.59). If L {ukx) || is finite for every point x
belonging to o set F of the second category in F, then the sequ-
ence My, is bounded, In otlierwords, there is o constant M suck that
an) < Miixd, m=1p .,

Let S(x,, p) be tha sphere considered in (ii). Since every
x €8 (0,p) can be writen in the form x = X1 — Xy, where x, € 5(x,, p),
we see that ||ud&)| < 2K for *e5(0,p), n=1,2,.. It follows
that || ([ < 2K = M on the sphere |x| =5 and so
Hun(2) | < V£ for every x and n.

Thgo €orem may also be stated
H2a{x){|\Is unbounded at some
sequedte is bounded is of the

as follows. If the sequence
poiat, the set of points where this
first category in £,

\ 4 4.36. Corollaries,

In this section we consider operations
of the form

b
) ) =[xy ar,

YY) Bamaeh and Steinhays {1]. The idea of

the proof, due to Saka,
may he applied to many simflar problemg.
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where £ belongs t¢ a linear, metric, and complete space F, and ¥
is a function such that xy is integrable for every x ¢ £.

(1) 1f the integral (1} is defined for every bounded, or even
only continuous, function x (#), then y¢L{a, b). (ii) Conversely,
if the integral (1) converges for every x ¢ L (g, §), then the fune-
tion ¥ is essentially bounded. (iii) If the integral (1} exists for
every x € Li(a, £), then y ¢ Ly{a, b), where @ and ¥ are functions
compiementary in the sense of Young. O\

To avoid repetition we take these theorems for granted; t’hey
ean be deduced from more general results which “fej:'w\ill now
prove, SN

(iv) If the sequence

7

wiwrw.dbidt tib}‘al'y_org_ in

B
) i) = a/ X (0 3nl8) dt 5D
Is bounded for every bounded, or even (mly continous, function x,
then M { ya; @, ] = O(1). (v) If {tax)} is\6Bunded for every x ¢ L (a, b),
then the essential upper bounds of ysvure uniformly bounded. vi) If
{ualxy} is bounded for every x ey then || yqllw = O (1)

To prove (iv), we observe. ‘that, in virtue of (i), each of the
functions y, is integrable, aud so #.{x) is a linear operation defin-
ed in the space consider€d in § 4.54(iv), r = 1. Putting x = sign y,,
we see that the modi)@{{'/lff‘,‘,l of the operation z, is equal to M [y,],
and it is sufficient™o apply the Banach-Steinhaus theorem. The
case of continughd;functions is not essentially different: we con-
sider the space.of § 4.54(iii), and, since the function sign y.(f) is
the limit of\A bounded and almost everywhere convergent se-
querce g%cbntinuous tunctions, we have M., = M|y, again.

In\'tase (v) we proceed similarly: each of the functions
Yz 18\ essentially bounded, and M., = the essential upper bound
of }yai.

In case (vi) each of the functions y. belongs (by (iii)})
to Liy. In virtue of the inequality M | #.(x) — ua(x,) | < || x — x, it Pl
(§ 4541), where >0 is a constant so small that iy, ¢ Ly, we
obtain that u,(x) is a linear operation. Hence, by Theorem 455,
|2ax) | << M| % || g, for n=1,2, .. Now, if the integral of @ (x})
over (g, b) does not exceed 1, then || x| <2, and so the inequal-
Ry jusx)! < M| xl|p gives ||¥alig < 2M, n=1,2,.., and the
theorem is established.
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The above proof may be used to establish (D), (ii) and (i) (pro-
position (i) in the case of bounded functions, is trivial, since we
may put x =gign ). To prove (iii) we put y.(f) =y (!} whenever
V] < n and y(t) =0 elsewhere. The formula (2) defincs a se-
quence of linear operations, and the inequality ||y."w = O(1)
implies ||y ||y < co.

(vily If the sequence (2) is bounded for every x el then
Wolyad = O) ). (viil) If the sequence (2) is bounded Jorpevery
x €Ly, then there exists a constant 9 >0 such that M#18 . 200 3.

The first of these propositions is a corollary 6f vi). To
obtain the second we observe that,if ||y, |y < M for =1, 2, ..,
then W [¥|y,/M|] < 1. (§ 4.541). R& S

The iled R HIoh %W have established tor infegrals have
anaiogues for infinite sums, The proofs rpl\!@in unchanged ).

N\
4.6. Trensformations of Foqnhe,r series. Given a numez-
ical sequence A, ), Aoy o, let us consider, besides the meries

(1) L1a,+- 2} (a,,‘caéffzx -+ &, ain nx),
fi=z N N§
the following two series <~
o i’:‘ 3 oo
(2) KO E R+ X, cos nx,
N\ n=1
(3) MNea, )+ ZI Ral@n €08 1% +- b, sin ).
.'\.. = .

Gi' h“\two classes P, Q of trigonometrical series we shail
denote{by (P, Q) the class of sequences {*«} transforming P
into. B that is such that, whenever (1) belongs to P, (8) belongs

\103.0“)-
) 4

) Hahn f1).

% Birnbavm and Oriiez 1].

) Seee.g. Bamna ch, Opérations linéaires.

) For the problems discussed in this paragrapk see 'Young [9].
Steinhaus [2], [3], Szidon {1, Fekete [1], M. Riesz [8), Zygmund

i3], Boehnar {1}, Verblunaky[l], Kaczmarg 157, Hille apd T a-
markin [1.] '
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A necessary and sufficient condition for {\.} to belong to any
one of the classes (B, B), (C, C), (L, L}, (S, 5) Is that the serles (2)
should be a Fourier-Stieltjes series.

Let {17 be a (/] and let aa(x), L(x), 0i(x) denote the (C 1)
means of the series (1), (2), (8) respectively. We have

i
@ o3(x) = % [ fa+nueat. N

Pot x=0. If h.e(C, C), or it ke (B, B), the sequence {d(0f))js
bounded for every fe¢ C, and, by Theorem 4.56 (iv), we\have
ML]=0(1), i. e. (2) belongs to S. Conversely, if the~ ~ggries (2)
is a E{dl]c S, the formula (4) may be written in the) Jorm

- W dbral}lﬂn "ary.org.in
®) an(x) = f o + 8 dL (O
] g \ )

Thence we deduce that the uniform boundedness of {3.(x)} invol-
ves that of {3i(x)}, Similarly, if cm(x)‘—’o,,(x) tends uniformly
to 0 as m, # > oo, 80 does ak{x) —&xX), and this completes the
proof of the theorem as regards fhe ‘classes (B, B) and (C, C).

IE {hd e (S5, S), it transtorms ih particular, the series {{-cos x+
+ cos 2x + .. ¢ .S into the sarles (2), which must, therefore, belong
to 5. Conversely, if the seues (2) is a [dL}, we obtain from (5)

that .
a \\
(6) .|.c* by <~ j |on(x 4 )} 4L (D)1,

N LA ]

Integrahﬁg thls inegnality over (0,27), and inverting the
order of infegration on the right, we obtaia that M [a}] < (v/5) M{s.],
where Z«\\}s the total variation of L (f) over {0,2r). Heuce the
serlfe;s\ %3) belongs to 8.

Mt remains only to consider the case (L, L). Since

\ )

| -

| 538y — 3309 | < i/ o + #) — oalx -+ 8] | 4L &),

W o — 03] < (2/7) M [ — 30,
the sufficiency of the condition is obvious (§ 4.34). To prove

the Necessity let us consider, for every #, d system /, = {(a, BD),
(%, 87), ...} of non-overlapping intervals. It follows from (4) that
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@ [ o dx = % jz? 110 { / Lt — x)dx } dt.

In

Suppose that (2) does not belong to S, so that the indefinite in-
tegrals of the functions /,(x) are not of uniformly bounded var-
iation. We can then find a sequence /, /,, ... such that the coef-
ficient of F(f in (7) is not uniformly bounded. By Theorém
4.56(v), there is an integrable f such that the right-hand side-in
(7) 13 unbounded, and, A fortiori, M [s,] = O(1), It folloirs that
the series (3) does not belong to S, and, in particulag, Woss not
belong to L, although (1) is a Fourier series. N

4.61. Let P denote the class of trigonomettiéal series con-
jugate o thosshelongipgrtoid. It is plain $hat'it P, and simi-

larly Q, is one of the classes B, C, L, S, thea (P, Q) = (P, Q).

A necessary and sufficient condition thut {#n} should belong
to any one of the classes (B, B), (G, CX XL, L), (5,8) is that the
Series conjugate to 4.6(2) should belong)to S,

The proof is similar to that.f*Theorem 4.6. We need only
slightly change the formulae whith we have used, so as to intro-
duce conjugate series. In.faet, let a.(x) and u,x) denole the
first arithmetic means of the series

MY

e N .
(1) Z; (2, sin nx \\’zn”cos Bx), () D h(@n sin nx — by cos 71X)
A= a=I

respectively, and fet [(x) be the arithmetic means of the series
A; 8in X + ), sin §x+..., conjugate to 4.5(2). If the series 4.6(1)
isad [f.].;w\“have the formula

\§ - L B
@ oulx) = —— [ fx + O T0 dt,
‘.\'. * 0
Emﬁlogous to 4.6(4). Considering, for example, the case (B, B), we
Suppose that the series 4.5(1) belongs to B and ask wnder what
conditiona (2) is the Fourier series of a bounded function. Arg-
ning as in the preceding section, we obtain that the necessary
and sufficient condition is M il = O(1). The remaining cases
may be left to the reader. _

4.82, Let ¥y (u), u >0

, be a funection non-negative, convex,
bounded in any finite inte

rval, and tending to infinity with u.
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If the series 4.6(1) is the Fourier series of a fanction f such
that y (. f|} is integrable, and if 4.6(2) is a S[dL], then 4.6(8) is
the Fourier series of a fanction g (x) such that y (|glzjv) is Integrable,
where © denotes the tofal varialion of L over (0, 2a),

Without real loss of generality we may suppose that v (x)
is non-devreasing. Let £ =2ri{N, i=0,1,.., N, and let v(qc{
denote the total variation of L over (0,x), so that v(2=) =%
Dividing hoth sides of the inequality 4.8(6) by v, and ag lying
the mean-value theorem in each of the intervals (Fin te) we
obtain that >

e
N { N

N \
x.oxx) v < X & pil 2 o, A
=] i=1 m\\ .

www dhradlibrary . org.in

where pi= v (£) — v (i), &= a.(x + ), L XV < ¢ Applying
Jensen’s inequality, and making A - co, we, obtain that

[z PN AP R
12 o < 20 pi e {7160 1| <1 [uftstolaLiol

i=1

Now it is sufficient to integt;aléf the last inequality over (0, 2x),
to invert the order of integration on the right, and to apply
Theorem 4.33. A

It must be em I'Q’E;ii\ed that the condition which we imposed
upon the series 46{%} is only sufficient and by no means neces-
Sary. This iz edsily seen in the case y (&) =u® since, by the
Riesz-Fischer thédrem, a sequence {A.} belongs to the class (I2,1%)
if and only AE, = O (1).

Th ::E.hé’orem which we have proved may also be stated in
the folkb\vving form, If ®(x) is & Young function and ihe‘serjes
4.6(2) belongs to S, the sequence {%,} belongs to the class (Lgp, Lp).
It belongs in particular to every class (7, I7), r > 1.

3

4.68. Let &, ¥ and @, ¥, be two pairs of Young’s com-
plementary functions.

The classes (L, L) and (Ly,, L) are identical.,

The proof will be based on the following lemma. 4 necessary
and sufficient condition that the series 4.6(1) should be a [ f) with

fe L:p is that, for every g e Ly with Fourier coefficients ak, b, the
Series
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) %+§<an @)+ 8,8
should be finite (C, 1)Y).

It fe Ly, g€ Ly, there exist two constants %> 0 and >0
such that A fe Ly, 1 g e Ly, and the necessity of the condition fol-
lows from Thecrem 4.41(i). To prove that the condition is sufficient let
Sx(x} and t, denote the first atithmetic means of the series 4.6(1)
and (1) respectively. We have then O\
'\

Y

F i
Ta= L [ g @y outy at. ~
T 3 -
Since the sequence {t,} is bounded for everys g Liy, it follows
that || owlige=drél)ibsameRBHEws that the sefids 1.6(1) belongs to
Ly (8§ 4.56(vi), 4.33). PN
Now it is easy to prove the theorem{\ It D) € (Lo, L:p]} then,
for every /¢ Ly, with Fourier coefficients n, b, and every gely,
with Fourier coefficients an, b, t];g.‘se;-ies

@ bhoa, ol + 5 Gn @+ A By BY)
A
is finite (C,1).

It means, in virtug bf the lemma, that the series with coeffi-
cients ks aq, ), b, belangs to Ly, i. e. {,) ¢ (L, Ly,

Corollaries,,. (i) If & and ¥ are complementary functions,
the classes (L3,£%) and (LY, Ly) are identical,

(i) 1;\@}5 1, 52> 1, the classes (L7, L%} and (L%, L") are iden-
tical. In particular (L, L7) = (1, L7},

Jo.Ch. IX we shall prove that, it r <5< 7, the class ({7, L7}
is, centained in (Zs, L#),

N 464, If the series 4.62) belongs to L, then ) e(S, L),
\)\,,}e(B, €). Let 4.8(1) be a © [dF]. From the formula 4.6(4),
with f(x +?) replaced by dF (x+£), we find that 20i [on— sl does
not exceed M [[, — ] maultiplied by the total. variation of F
over (0,25). It follows that [6n~0:] >0 as m, n-co. Thus

) A series g tu 4.

I8 said to be finite (£, r), If the r-th Cesare
means of the series forms a bo

unded sequence,
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the series 4.6(3) belongs to L. Similarly we find from 4.68(4) that
zlo, - 21| does not exceed M [f, — . Max |Fi, i e. B is trans-
formed into C.

A similar proof shows that, if the series conjugate to 4 6(2)
belongs io L, then {4} ¢ (B, C), {M} € (S, L).

4.%8. The conditions which we imposed upon {’.} in the\
preceding section are not only sufficient but also necessary. , For
the first parts of the theorems this follows immediately by (Consi-
dering ke series } +cos x+ cos 2x + ... (C S and sinx +sin2c+
+ .. € S. For the second parts the proof is more diffigult ‘and we
do nct propose to consider it here. AN

Let {i,} be an arbitrary convex sequemedbn@ll\ihrw)&?f&ig.
=17 % 20, h=l/log n, h=1/log log n, for psiitficiently large.
In § 5.12 we shall prove that the series 4.6{2:)Qui.1h such eoefficients
belongs to L, i. e. {},} iransforms Fourier-Stieltjes series into Fourier
series, boundeqd functions into continubls,’

The sequence X, = 1/(log 7)'**, & >0, n>>1, belongs to (S, L)
and (5, C). For e=0 this is no lotiger true (§ 5.13).

4.7. Miseellaneons thegrémi; and examples.

1. Let ¢(x), x 20, be gonvex, inereasing fo = with x, and vanishing
at the origin. It ¢{y is{"the inverse function, and 23>0, 220, then
ab < ay (a) 4- b (B). K\

b
2. Givena fuq(;tién Fell(ab), r=1, let fz=]| f FGdx|, where Gel™.
O ;

Shew that me,[ﬁ]\‘:; %up;a for all G with M, [G] <1

[Sinﬂﬂ;?ﬂé}[’F]<w, we may suppose that M [F]l=1. By Youog's ine-
Quality RN ave .’Ggﬂji;[F],fr+5_lJE:,'[G]fr’g1, and for a apecial function @,
viz, whei;;' G = | F™!sign F, we have f;=1. It is easy to see that the thee-
rem halds true when i IF) = s

M‘; “We ndd that, if (a.) = (0, 2=}, it is sufficient to take for the functions G
Only trigonometrieal pelynomials, sinea for any Gel” we can find a trigono-
matrical polynomial g sueh that MG — g] < and so, by Minkowaki's ine-
Quality, { 0, [G} — D, [g] | < <.

3. Let y(x), x 20, be convex and strietly increasing, ¥ (0)=0. Let f(x)
be integrahle ang periedie, &nd F({x) the indefinite integral of f(x). It
W7 15020 < €, and 0<k < 25, then | F(x + K) — F(x} < y._(C/H), where
Z. 18 the function inverse to y. If fel’, r>1, then o(F;3) =o@' "),
Young (3.

[Apply Jensen's inequality].
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4. If flogt I f! is integrable over (—= m)1), s0 is Floglnad
[Apply Young's ineguality to the produet 2 [£1-%logt) xl
9. If a, are the cosine coefficients of F(x), and Fl)loge x| is inta-
grable over {(— =, %), the series &+ a4 a3+ ... coenverges sod has the
24

sumH-l-[f(x)logﬂsiu‘,gx)dx, Hardy and Littlewood [7].
m

[Express the partial sums of the series ac anp integral. The partis! sdus
of the series cos.x L con 2x .,

are O(log? (jx;) uniformiy in = Tiis fo!-
lows from the first formula 1.12(8) and from the general thenre;m\t}fat, if
Uy = Q) f) =ty + tyr + e Sp =ty + b, then firyNs, = O (1)
a5 r=1-—1/n1. To prove the Iatter fact we observe thaty$ii k, ! = Afk,
then firy—s | si(l—r1a, +202, +.. L n: a, 1+ Am {1k -2 O (1)),
8. Let u,(3)= w (8 f) = Max Wl 1 (x + By — F(x p,g;q‘ tor 0=z #7A.
The tunstiva dbiashifarasy K8 1o Lip (@, p), if w NS0 (%), Show that
() i FelLip(zp), then felLip{a,p), 0<p, < p, GINITYF is contiovous and
P>es, then w,(3) > o (3), (i) if feLip (%, p), then £ 2R,

[To prave (iff), integrate the inequality BB f (x+ ) — £ (<)} < C with
respect to A, invert the order of integration)\#d consider a valne of ¥ for

whieh the fonetion fix+2)—Fo)° is \yntégrable with respect to h. T a-
markin, Fourier Series, p. 49] N

. <N

7. A necesssry and sufficien}:ﬁéuditinn that f(x) should beloug_ to
Lip{l,1) is that there should exigtia function £1{x) of bounded variation,
equivalent to f{x). Hard ¥y and Littlewood [6,].

[To prove that the con%;ion is snificient, let 3.(x) be the first arithm‘e'
tic means of S[f). They ™ [""n(x'}‘h)‘%(x)] SR F e ) — F(x)] < Ch,
M [L(x)] < €, and it is ufticient to apply Theorem 4.825. To prove that the
condition ig nacessary.ihh encugh ta supposse that f{x} is non-deereasing.
For a more elamettary broof see the paper rafsrred to above].
8 A neces«s}ré and suffieient condition that F(x) should belong te
Lip (1, p), p>>Lgisthat £ should be equivalent to the jndefinite integral of a
funetion balenging to 1”. Hargq Yand Littlewood [4,]
[’I‘h,éé‘an'ditinn i3 necessary since
&

N,

21‘t XA pird
O MUetn—sena f{ [i1ro1af o< f1rpa
ms o E o
\ 3
To shew that the eondition is suffisie
9 Let 5,(x) and o
Then {i} a necessary an
O<la =71, is that the G,

nt we prove that M, [ (] =0 (1)
2(x) be the partial sums and the (C,1) means of &[f].
d sufficient condition that f should belong to Lipe,
should belong to Lip « uniformly in #, (i) if fe Lip &,
then w (3;:5,) = 02" log 1%) wniformly fa 5.

T IFuis real, ut denotes the number Max (u, 0).
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10, Let s,{x) be the first arithmetic means of a trigonometrical series.
A necessary and sufficient condition that the series should be a Fourier series
is that there should exist a funetion s {u) =0, ef{uyu v~ with #, and such
that W[y 5, 1=0{1). dela Vallée-Poussin [2].

[it ';-(u, =1, piu)iu—»e=<, there exists a convex function ¥¢,(#) < ¢ (i), ma-
tisfying the same conditions. If fel, then there exists a fupction (),
¢ (ki — e, much that o( f)el].

1 Let f{r,x)=%a,+ (g, cosx+ & sinxir4.. A necessary and suf-{
ficisat congition that fir,x} should be a differemce of two non-negative
harmonie functions is that M [ fir,x} 1=0(1) as r+1. 9 \“\

12 Let ={u) be couvex, non-negative, and Increasing, and lef™iw, -
+ {2y eos £ + 4, Sm x)4 ... be a E[4F]. A necessary and suiflclent \cotfdition
that the positive variation P(x) of Fix) should be ahselute]y con&mﬂuus, and

that 7’(x} should belong to £_is 9t [¢ {1 (r, 0)j1= 1) i r—vl Where f{r, x)
7 W ibrary.org.in

bas the same meaniog as in the previous theorem.
I5. If felt and ¢, are the ecomplex Fourier coefficiauts of f, then the

[T , 7

L SESNRPRRY:1
funetion £ {x) = /f(x L BfHdt s mntmuou}\ Ynd hix)~ 2 cnite

[t
{§ 212). Show that Parseval's theorem is a, s1mple corollary of this result.

14, Leat s (x) r =0, be the r-th Cesm*q means of a teigonometrical series.
A necessary and sufficient eonditlon tha‘t the series should belong to L:p is

Il n Iq)-_(l(l} If the series ie a \:a[f]eL then [[f— o[ (p—+0 a8 1 e
15. Let X be the set of sl functlons x{f) which are the characteristic
fonetions of measurable sets gzo\iained in (@, 2r). T the sequence 4.36(2), where
(8,8} = (0, 25), is boundedifor'every x e X, ihen M [y} = 0(l). Saks [1}
[The proof rums ond;}e same lines as that of § 455. 1 we put jix —xl=
Do 5
=_/ |x1(f)-xg(t)ldi} X becomes a metric and complate space. X is not a li-
[
Bear space bn\t‘xt has the following property which may in most cases be
used 1uste§\nf licearity; let Siu,p), g0, be an arbitrary sphere; for any
X €50, p)\there exist two points x, and x, balenging fo S(u,p) such that
x= x{'_k'g It sufficen to put () = ()4 x (t) [1—u ()], xA8= ) [I—x (O]
\ ?ﬁ There exists a function fel and a measurable set £ such that
%\U‘j Integrated formally over £ divergea.
[This follews Irom the previcus theorem and from the results of § 5. 2]
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Properties of some special series,, -
5.1, In this chapt e intend to study sbmle particular
series, ‘&ﬁi“éhd%Ti'aeuggltagilg)fglﬁeresting in themsé€lves, but provide
examples illuminating many points of the general theory. The
latter consideration wilt be decisive in oqr:t\:}roice of material.
3.11. Series with coeftictents mionotonically tending
to zero. In § 1.23 we have provgd’th’at if a sequence {a,} de-
creases monotonicaily to 0, or, more generally, if {a.} tends to 0
and is of bounded variation, ‘b,oih‘ series

'8} a) ta,+ 3 ancosnx, &) 2 a.sinnx
n:-l} ne]
converge uniformly Xexcept in arbitrarily small neighbourhoods

of the points x =M\(mod 2r). We will now prove some further
theorems on thé behaviour of these series,

It is obxﬁoils that, if 2,2 0, a necessary and sufficient con-
dition f@’e uniform convergence of the series (la) is the con-

vergenge ot 4, +a,4-... For the series (1b) the situation is
less trivial.

WO 8> 120, a necessary and sufficient condition for the
Napiform convergence of the series (1b) is na,~ 0 Y),

We shall consider only the values 0 < x < Y, = To prove the
sufficiency we denote by rufx) the M-th remainder ay cos Mx + ... of
the series (1b), and put e, = Max ka; for k> m, N= N, — (1/x]+1,
so that N> 1, /N <x < 1{(N—1). For any x we put ru(x)=

) Chauvndy and Jollife f1i.
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= rulx) + (%), where 7} denotes the sum of all {he terms belong-
ing to ra; with indices = N, ¥ N<{AM, we have rin(x)=0. If
N> M, then

N—1

bra(e) <l x 2; kay < (Wi

it follows that |!’41()C)| ey for every MZ>>0. Applying Abel's
transformation to #ay, M< N, we obtain 7

m ex(N — M) T em

Bay
rule) S (ak '—ak+1)|Dk(x)|+aN Do)} < —""' < 8Nay < 85%

since ID»e(x) =i smx+ .+ sinkx| a,lfsmlx“.hjx dfx. Sam:lar]y,
1f Nl M, then rig(x)| < B au/x <8Mﬂ}| <85 ﬁnﬁt%r"r (gh%
ralay |4 -’u{x) <9y for 0<<x <Y,z Vémce thig Ineduality s
ObVIOhE for x =0, the uniformity of convergenge Mollows.
Canversely, assuming that the series {1b) eohverges uniformly,
and putiing x = %2V, N > oo, we deduce fQ’m the inequality

N NGNS

. . &
E @n SiD X 3 Sin — .88 N\ 3 /sm L INay
N1 4 Iy yN‘I—i

that VJN—>0 This completes thet proof

If na, is bounded, the abo¥e argument shows that the partial
sums $.{x) of (1b) are umj'ormly bounded, but, as is seen from
the series sinx + | sin 2ph... , the sequence {s.(x)} meed not be
mnifermly convergent. \\ '

5421, (i) If. @ 0 and {a.) is quasi-convex, the series 5.11(1a)
converges, saveok) x = 0, to an integrable function f(x), and is
the Fourier series of f(x). If {a.} is convex, f(x} is non-negative.

Appl iﬁ@"Abel’s transformation twice, we obtain the expres-
sion for st'he a-th partial sum of the series 5.11(la)

"1} sﬂ{ t) (m + 1) A9 Gm K’n(x) +Kn{x) (H‘I‘ 1) Aan+1+Dﬂ(x) a-'i-“!
Where D and K, denote Dirichlet’s and Fejér’s kernels. If x+#-0,
the last two terms on the right tend to 0 with 1/z, and therefore
Sal%) » fx) = A2 a, K,(x)+24%a, K,(x) -+ ..., which is nen-negative
for {a.} convex. Since |f(x); <18 a,|Kx)+2 Fa Klx)+ ..,

1 Young [9, Koimogoroff 1]
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and the last series integrated over (— =, ®) gives the finite value
(| Lag|+2] L2a, | +..), f(x) is integrable.
The problem of the series 5.11(1a) being a Fourier series is
slightly more delicate, and we shall see in a moment why it is so.
From the expression for f(x) and $:(x} we easily find that
| F{x) — s.(x}| is contained between the expressions

N\
imi_%; (7 +1) | 82 | Ko(x) + Kalt) (141) | danss ]} + e a3

Integrating this over (—=z, %) we find that M| f—sa=0(0 %2611 Lny
where L, denotes the integral of | Da(x)| over (0, w4 Now it is
not difficult to prove that L, ~ log n (see Ch. VINA Hence
(i) Let s,,(:g% denote the partial sums of fﬁ:”series 3.11{1a).
it a, ¥ ‘&'ﬂglb{'ﬁﬂ] S phdsionvex, the relation NX [ f — s,] > O holds
if and only if a, = o (1/log n), X N\
It a.logn— oo, e. g if an=(log m)~"a 15 1, then M f—8a]-vo0,
M [sz] » oo, The series
@  COSEx
»=2 logn
which plays an important pfgi»t in some problems, is a limiting
case, sinece here the sequence M [f— s is bounded and yet it
does not tend to 0.
Te complete hi;‘“i)roof of (i), we observe that the series
5.11(1a) is certainly © [/ if M{f—s,]-0 (and in particular if
@z log 2> 0). When'this condition is not satistied we must proceed
otherwise andtwo ways are open for us. The first of them consists in
proving that’ W [f —o,] -0 as fi—o00, or that W [f{x)— fir, x}] -0
8s 7 > ¥, Gvhere o.(x) and f(r, X) denote respectively Fejér’s and
Abel's{means of the series considered. We prefer to base the
pragtef (i) on the following theorem, which will be established
n Chapter XTI: If @ trigonometrical series converges, except at one
\pbint, to an integrable function [, the series is & [f].

Remarks. (a) Given an arbitrary sequence of positive numbers
€2 +0, we can easily construct, e. g. geometrically, a convex sequence
{a.} such that > €y ;0. Thus there exist Fourier series
with coefficients tending fo () arbitrarily slowly (see also § 2.9.2).

(b) If ay, b are the Fourier coefficients of an integrable func-
tion, the series X &,/n converges (§ 2.621). The example of the
Fourier series (2) shows that the series X a,/n may be divergent.
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8.1Zi. In the preceding section we proved that, if a 10, A?an:z[), the
serles 5.11(1a) is a Fourier series. We will now show that the condition
“a, 70 cannot be replaced by da, =0, More precisely, there exists a cosine
series with coefficients monotonicaly decreasing to 0 and yet the sum f(x) of this
series is noi integrable'). In faet, let us suppese that there exists a sequence
olintegers U= i, <, <7 ... such that &, is conmstunt for b, <&k, ), n=12,..
Making Abel’s transformation, we obtain for f{x) the formula

"N\
{1 iw=3 > da, Dy = Za D, (9, O\
Jz_o {
e\
where a == Aa} . Wae reguire the following twe inequalities g >
“n N

Y s

@ j | D(x)idx > Clogn, L= f | D) dix < CJE*E
1in o

n=23,..,
W, llbral'y.org_m
whers € and €, are positive ¢onstants. The seel}nd \Nyequahty is a corollary
nf the relation £, ~ logn, which will be proved G4a Chapter VIL. Gr the
other hand, since D (x}=0(n), the integral\ of ¥ D,(x) | over (0,1im) is O(1),
and the first imequality (2) is also a corellsry of the relation L, ~ loga.
From (1), \2), and the inequality | D,{x)| <»21{x 0 < x <= we dee 1hat

9‘"1 N

)] f fidxz Cou logh, —C,Zanlagk —2log (7h) Z o,
173, ~ =1 A=y 41

v 4

PAN
Putting «_ = 1/n, 1y —~2“"IE and arguiog as in § 423, we obtain that the
lait-hand slde of (3] 19 §q\bounded as v o

5.13?). Nextwe shall consider the partial sums 5a(%) of
the series 5.11Ib) with coefficients monotomeal]y tending to 0.
Let Difx) = s\fn X4 .. +sinnx = {cos Lx—cos(n+ 4 x}2sin}x,

n(x\ “4\\1\_ cos(n+ ) x)2sin x>0, 0 < x<n We have

(N s,,(x) = 2 B Du(X) + Gugr D)~ Z 4y Dnfx) = ().

\Substltutmg D, for Dy in the last series we obtain a functlon
f(x) differing from f(x) by %a,1g%/,x. The series defmmg f(x}
has non-negative terms and, since the integrals of D, over (0, %)
are exactly of order logn (§ 2.631), we conclude that f(x), and

Y Szidon [1].
9 Young 9], Szidon |i], Hille and Tamarkin 112}
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therefore f(x), is integrable if and only if the series with terms
dar log n converges. ,

As in § 5.12, we see that W [f— sa] 0, provided that
daylog 24 da, log 3 +...< oo, (Qbserve that a, log # < <iaa log n+
+ daplog (1) 4+ ... = e (1))

Since a, + 0, a simple caleulation shows that A

2f (x) sin x = 4, + g, cosx—f—Z (@msr — Bm-1) cOs 2z, \

The series on the right, which is uniformly con\'mg&nt, is
Z[2fsinx]. Writing the PFourier formulae for the doefficients
@1, 8y, @y — @, ... of the last series, we obtain, bY afld;uon of some
of thei?wt\‘u? r%?&%ﬁb}iglﬁ' YO in X

@ 2 f Fix)sin nx dx, s, 2, ...
T & L&

Collecting the results we may enounéeMhe following theorem.

If an > @niy~ 0, the sum f(x)’é)" the series 5.11(1b) is bounded
below in the interval (0,7), andhwe have the formuln (2), where
[ sinnx is continaous ). A mcessary and sufficient condition for
the integrability of F is the convergence of the series Jda,log 2+
+ dagdog34-.. If thisicondition is satisfied then M{f — sz} 0.

If an > 8y —rO,\ihe convergeace of the series J4,log2+ ..
implies that of al\-P Ysas+ Yy ag+ ... and vice versa. The first
part of this propesition follows from Abels transformation, if we
observe that leg # —log (# — 1} ~ 1/n. For the second part we
must use th'ésfact that, if a, + 1 g, + ... < oo, then a, + &/2+...+
+ anr’ﬂ%ﬂn(l + ..+ 1/7) and so a, = O(1/log n).

\ 5.2. Approximate expresstons for certain serles?).

WJi ‘is important in some cases to know the behavicur of the series

\ 5 11(1) in the neighbourhood of the point x =0, and we intend

to give approximate expressions for their sums, which we shall
denote by f(x), f(x) respectively.

5.21. We suppose that the coefficients 4, in 5.11(1b) form
a sequence decreasing monotonically to 0 and convex. Put x, = %/2p.

') The continuity of fsin nx followa from that of fain x.

) Salem [1]. Less pracise resuits had been obtained previcusly b¥
Yourg [3L
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A simple computation shows that f(x,) =5, sinx, + b, sin 2x, +
+ ..+ &, sin p x,, where b = bﬁ”’, f=1,2,...,p—1, may be written
in either of the forms

by == a5 + {aspj — Op) ~ (Tap—y — Cupy) + e s
b = e + a3p) — (@217 + Capy) + (Gapis + spp} — oo,

and b, = 29 <= a, — a3, + a3 ... .
8ince @, and Ada, decrease, the expressions in brackets\'ﬁlgb
decrease, and we find that a; < &; < a; + o, 1. €. & <IN 20y,
J=1,%,...p — 1. Observing that » > sinz > 2a/r for 050 < /2,
we find that the ratio of f(x,)—&, to[a, + 2a,+..H{P"1) apilip
is contained betwen 1 and =. www.dbl'antib}‘al'y_org_ill

To find a simpler expression for f(x,) weldhall make an
additiona! asumption about {a.}, viz. that g, iswon-decreasing. To
elucidate ihis hypothesis we observe thst fn‘sll the series 5.11(1)
that gecur in practice and have coeffjeients steadily decreasing
to 0, #a, is monotonic, at least for n sufficiently large. Moreover,
if na, is non-inereasing, the functjofi *f(x) is continuous, or has
4 gimple discontinuity, at the peiat’'x =0 (§ 5.11).

If 2, is non-increasing and\id, non-decreasing, then [a,+2a,+4
+ ...+ {p — 1) ap..;}/p is confdined between (p—1)4p-1 and pa,
or, & fortiori, between ?}ph}— ta, and pa, Since pa, is bounded
below by a positive nmnber, and 0 <&, <4, we find, finally, that
F () ~ pa, To find\a formula for an arbitrary ¥ -~0 we require
the following lemila:

If x, is gnarbitrary point in the interval =2p < x < =2(p—1),
then f (x, £S5 = o(pag) as p > ev.

In {he formula 5.13(1) we break up the sum defining f(x},
into t\\«lo’3parts P(x) and Q (x), P consisting of terms with indices
setp,) where » is a fixed but large integer. Since {Di(x)|<
D+ 2 4 ...+ £ < &2, we find, by the mean-value theorem, that

[P () — P (x)| < (% — %) [y 17+ o+ - (pr)] 2 0,

since (x, — x}) << #/2 (p —1), kda, >0, and so &2 da, = o (k).
Remembering that D (x) = [4 ctg § x— cos (7 + 1) x}2sint x,
we put accordingly Q= Q,-+Q,, where Q =}etgdx (d aprir+..)=
=@y totglx, It is easy to see that Qy(x,) — Qi(xp) =o0(1) as
P - oo. Since Jda, is non-increasing, we find that | Qy(x;)] and
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[ Q(xp)| do not exceed Cp*da,, where C is an absclute constant

(§ 1.22). Now the inequality na, < (n+1) a,4, involves nAda, < ay
and therefore

Cp*dap = Clp/rypr da, < C (Ir) apr <(CI1) pay < < pa,,

if r is sufficiently large. Collecting our inequalities together, we
obtain ultimately | f(xp)— f(x,)| < | P} —P(x)) | 1 Qo) - Qe
10 |41 Q) | Colt) +01) + B e pay < 3¢ pu, s ANlarge.
Since ¢ is arbitrary, the lemma follows. B A\
From what we have proveq it follows that f (x).~Sph,, where
the integer p is defined by the condition =/2p X2 (p 1)
It is however preferable to state this result in a\,sljghtiy different
form, We may alw, ¥8 suppose that 2. = g (n), whers g (x}is a convex

and decoeasthg: (HEEMGHOHE 2 [ndeed in mosteases a4, is just given

8211, fet o (x), x20, be a ,fu}ze“:é.:'on decreasing to 0, convex,
and suck that na (n) is po, “decreasing. If a(n) = q,, the sum of the
series B.11(1b) satisfies the relation f(x) ~ x a (x—) as 5 -+ 0.

In fact, if p = p, = [2/2¥]4+ 1, then %/2p < X < x/2(p — 1) and,
by the previous result, f{x)'~ pa(p) ~ x1 4 (). It remains only to
show that a (p) ~ g4 (). For small x we have x—t < p < 2%, From
the first inequality "we see that a(xN=a(p). From the second,
assuming p even,¥&deduce that o N <adpy=2p) (P2l ip) <
< 2/p) pa (pyLa (). Using the inequality p + 1 < 2%~ which
is true for.sqmll X, we find that a{xY) < 22 (p) for p odd, and
8o in any~case a(p) <  a (1) < 24 (p). This completes the proof.

5:22, Supposing the Sequence a,, a,, ... convex and decreas-

ing“tci;l], we find for the serjes 5.11(1a) the estimates
7

o\ F—1
) tl) f(xp) < ':lh,"ao +k§1 {2y — 2p_z) cOS }?.JCP,
—1
2 f(x)> ta, +k§ ({ax— Qi g) — (Qpip— @ip—s)) cO8 kX,

Replacing in (1} a, by (a,,——a1)+...+(ag,,_1 — Qap) - Ay, and
a.&‘—ﬂzp—k by (ak —_ (I,H_:) =+ ... -+ {azp._h, —_ agp__k), wo find that

a?p!

1
@ F)<2[fda, +2 dax D)) + 4
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where /), denotes Dirichlet's kernel. To obtain a lower bound
for f(x}, we shall make an additional hypothesis concerning {a},
viz. that & {ay — @.41) is a noun-increasing function of & {from the
convexity of {ax} we only have & 44, 0), From this assumption
we deduce that (azﬁ-i-k_ .’.Idp.,,.,g) E ‘% {ak—agp_k), k= 1, 2, ey p—1,
and thervefore, using (2), that

£—1
(%) F0) > bl das+ 2 Aay Dalxy), .
= AN
It is natural to suppese that a4, 4a4,+..=co. Thenmte it
follows that da, +24da,+..+(p —1) dap_1=(a,—2,)+(@p=a,) 4.+
+ (@p -1 — a,) > oo, and from (3), (4) we conclude that’f{x,) ~ Ja,+
+246, 4.+ (P -1 4 Gp—q ~ 451 + 24 ﬂnf{vw_d'hﬁ'»@ﬁ\.brary.org.in
Now let x, be any point in the intervalX&/2p, =/2 (p -— 1))
We find, as previously, that |f(xp)—f(x;2~i;§o(1)+o(p’dap).
This, together with the inequality p° 4 a, < Q@]+ 2da,+..+ p da,,
yields the final result f(x) ~da, £8Ja,+ ..+ pda, where
p satisfies the condition =f2p < x <&/2 {p — 1).

5.281. Jf a(x), x>0, fs.ﬁ%;' ‘;bositive and convex function,
fending to 0, then for the sum};}"(x) of the series 5.11(1a), with
@ =a (r), n(anw—amu) nop-lftreasing, and a,+ a, + .. = oo, we
have the formulae Q

ix

W Fo~ L0 a1t~ [ o o

To prove(ths first formula let us pot ge=Ja, +2da, +...+
+kda,, andet F(x) be the first integral in (1). We have to
prove thab., “()c) ~ gs where p>>1/x has the same meaning as
in § 5.2030 Let g be the largest integer < 1/x. Since @ (£) is convex,
@()~3@(t+1) is non-increasing, and it is easy to see that
F&)> g, —a,. Similarly we find that F(x) < F (1jp) < gp+a,.
Rgom the inequalities 8o Bp=8e+(8p— &)< Lo+ (P —q)qday =
=&+ 0(¢°da,) = g, + O (g,) = 0 (g,), we see that g, ~ g,, and
80 F(x) ~ g

Let F/ (x) be the second integral in (1). To prove the second
formula in (1) it is sufficient to show that F{x) ~ #(x). This,
and even a stronger result, viz. F(x) 2 H(x), foliows from the
inequalities ety =la{fy—a (¢ — 1)| = '@t + 1)|. The details of
the proof may be left to the reader.
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Iz the above proof we assumed tacitly that a'{fy exists. Tho exisfence
of a'(f) follows, except for a met of £ which is at most enumerable sud has no
infizence uporn the integral, from the mere convexity of a{fy (§ 4141). Let
us asseme now that a”{x) exists. The inequality ﬂAa =R Y A nf1 will
certainly be satisfied if only (*} a'{x)+ (x — 1) a"(x) =0 Thls test may he proved
as follows. Let a{y) =x{al{x}—ea(x4 1)} theo a{)=ax)—alx+1)+
~+x[a(x) —a{x+41)]. By the mean value theorem we ahall havs i) =0
provided that &'(x+%/a"(x+ %+ x>0, where 5 is a number contained
between O and 1, and the latter inequality iz a econsequence of {*}. Of courges
it ia sufficient for (*} to be eatisfied for x large.

Examples, 1t an=rn"" 0<a<1, n2 1, then f(x) assd f {x)
are of order x* ' as x--+0. If a,=1/logn, 1% .2, then
fx) ~ 1x(log %)%, f(x) ~1jx|logx}, as x> 0. In particu’isx the series

oy 8in 2y "
L] P

(2) www.dbraulibrary.org.
A=z logn

whieh converges everywhere, is not a Foumer}Senes This follows
also from the fact that the series (2), ihtegraled term by term

diverges at the point 0 (§ 2.621). ;‘,
5.3. A power series. We shall now consider the power
series &3
{1) Zeu’n logn zi__ .
o e
where o and ¢ £ 0 ard r\eal constants, z = ¢, 0 < x <7 25, The

series (1), which whq first studied by Hardy and Littlewood,
possesses many mterestmg properties,

If 0 <a M§the series (1) converges uniformly in the interval
0 x 2= fr)\a function . (x) e Lip n 1.

The\(heorem is a corollary of certain lemimas, which are in-
temstrng\n themselves and have wider applications.

=\ \531. van der Corput’s lemmas. Given a real function
\_ﬁ(a) and numbers a < b, we put

Fuy=e"® I(Fa,by=[Fuyds, S(Faby= 5 F@)
a o nad

" Hardy and Littlewood [9). Following Hille [1], we base our
proof on var der Corpui’s lemmas, See van der Co rput [f].
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@ Y fl), aslx < b has an increaSing derivative f'(u),
and if f'{uy = 0> 0, then [ [(F;a, )| <4p

Buppose that there exists a A >>0 such that f'(&) =%, or
fw) = —», throughout (a, ). Since 2xiF () dn=dF (u)/f(z), an
applicaticr of the second mean-value theorem to the real and
imaginary parts of /(F; a, 5 shows that || < 2/mh <T 1)),

Assuming that the conditions of the lemma are satisfied\
suppose for the moment that f(#) is of constant sign, say /' 2= O
in {a, . If a<Zc<h, then f'(4) = {(c—a)p in the interval ¢ <ux.<‘b
Therefore  /(Fia,B)| < | I{F a6} |+ [(Fe,b)| <(c— a}+1f(c—a) a,
Choosing ¢ so as to make the last expression a mmlmum, we tind
that |7{F; a, &) << 2p~"% In the general case (4, g‘f is dsum of two
intervals in each of which f(u) is of conbtati l%?g%hlﬂﬁﬂytﬁ'eql‘é'-
sult follows by the addition of the inequalities for these intervals.

iy fet D(F L B =1(F a,b)— S(F;'a;.%.: If fa) is mono-
tonic and | f'(uy| << L, then |D{(F;a, b)| A,\ Yhere 4 s an abso-
lute constant. v

Svppose first that @ and & arew ot integers. § may be writ-
ten as the Stieltjes integral of F'(a) dt (1) over (a,b), where & (1)
is any function which is congtant in the intervals m<“a<<n-+1
and hss jumps eqnal to 1 at the pomtq n It will be convenient
to put &)} ={#] +1 form:se&o +1, .., 2@y =u+0+Eu—0).
It follews that \\i

D{Fia,b): jF(sz) dy (v}, where y(4) =u —[u] -
\a

The functmn 7\'(43,) is of period 1. Integrating by parts, we find

that D(F;, ¢;8Y= — /(F'y; a, 8) + R, where {R. << 1. The terms of

{7 ar3'§ sin 2xnuizn and the partial sums are uniformly bound-

ed. “ﬂltlplymg Z[y] by F’ and integrating over (a, b), we see

that"DYF; a, b) — R is equal to the sum of the expressions

Q J_[f @ Fw

a AN i (o) + detmili ) — fwl]
) Bainl] fayn f J pay—n

for n=1,2, ... The factors JY(f' = n) are monotonic and of
Comstant sign. The second mean-value theorem shows that (1)
does not exceed 2fmr (n— 1} in absolute value, and so the series
of expressions (1) converges absolutely. This completes the proof
in the case when a and » are not integers. If a or &, or both,
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are integers, it is sufficient to observe that D (F; a, b) differs from
lim D(F,a4+% b —c¢) by at most 1.
340

{is) Under the conditions of (i) we have
LS (F 6, 01 <0y —Fla) + 2] (4p~"> 4 A

Put B, =p— L, p=0,F1,.., and let B,=Ffw,) 5. (8=

= exp 2ri{f (@) — pu]. It is obviocus that !f'(w) —p| < §\ip the
interval (2 2,11, Let &, ari, ..., 2,4 be all the pointd 3, if such
exist, belonging to the interval a u < b. Using (i) and(ii), we see
that the expressions S({F e, tpp) =5 (Fp; 05, 2p 1 )= I(FP, Zp, Ept1) —
— D (F,: o, %511) do not exceed 49~ + A in abéo}ute value. The
same wmay breukitithf BEMNa, 2,) and S (F; dpnb). Since S (F; 4, b}
is a sum of analogous expressions formed\or the intervals (g, éry
(&5, %rg1); o s (#riss #), the number of &hich is s+ 2 = fi(%4) —
— i)+ 2 < fi(0) — [ (@) + 2, the resul‘t follows.

5.32. The parlial sums s,\((xl of the series 5.3(1) with 2=—1,
are O (N} uniformly in x. "

The function f(x) ;IZR);”I {cu log # + ux) has an increasing
derivative. If v > 0 jg\an integer, 2 = 27, b = 2't", we conclude
from § 5.31(iii) that\S (F 4, b)| <L C2%® with C depending only
on ¢. The sam 1@ Mrue if 2¥=a < b < 2, Let 20 < N« 270
Then |sx(0)| N F[S(F L2+ (SR 2,4 +...+|SH 2N <
<14 042" \+ I+ 2% L C 2% L C, N, with C, depending OHIY
on . O

Wé’}ﬂﬂ now easily prove Theorem 5.3. Using Abel's fraos-

fom\\\;tioh we obtain for the N-th partial sum of the series 5.3(1)
the\expression

.\" '3 h |

1) X5 (x) AT 4 sp{xy N7,
=1
Since % = O (v 0"

*), we conclude from (1) and from the re-
lation 5,{x)=

O (v'+) that the partial sums of 5.3(1) are {(a) uai-
formly convergent if = > 0, (b) uniformly O (log N} it « = 0, {¢) uni-

formly O(V™) if a<{0. Take 0<a<1, Making N-»o2 in (1)
we obtain

DX+ )0, (X)= Z{S (x4 8 -sf) = Z + Z =P+Q

=1 w=l bl
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where #2300, N=[1/#]. The terms in @ are O (v%) =0 (v —7%),
s0 that Q=0 (N} = 0"). On the other hand, since syx),
apart from a constant factor, is the partial sum of the series 5.3(1)
with # = — ¥/, we have (see case (c) above) that s)(x) = O (v'»).
Applying the mean-vatue theorem to s5,(x + &) — s5,(x), we find that
the terms of P are O (") A% =0 (hv™), and so P= O (AN*%) =
= 0(4%), Therefore |p,(x+ 1) — @ (x}| < P} +|Q|= O (4*) and the{
theoren: follows. \

5.33. Theorem 5.3 ceases to be true when ¢ =10 (and\én
when o = 1). In this case much more can be gaid: if 2=, the
series 5.3(1) is nowhere summable A, and, i fortiori, is 1ot 2 Four-
ler series '). However, if 3> 1, ¢ =0, t}\l.\.raw%\.re,lgg?'a.uﬁrbf‘e;ry.org.in
= pitrlogn 7= ot g

AN

PAL

1 & zn,
(1 ,é’; mh{logn)®
converges uniformly for 0 < x < 2=, Fé:r:\the proof we replace

v by v log “Fyv= 0 (v " log P\ in 5.32(1), N " by
N"log~ ¥ N, and observe that the geried with terms O (v logFv)
converges. RN

N

5.34, There exists a .gor‘:tériuaus Junction f(x) such that, if
an, by are the Fourier coefficteats of f, the series L(lan"™*+| 8. [*"")
diverges for every == 48 For, if f (x) is the real, or imaginary,

. 1 2 2 2
part of the function 5@3(1), whers 3 > 1, and py = a2+ ba, ps > 0,
then Zp,>"* = o for s > 0, and this is equivalent {o our theorem.

\X
5.4. Lacapary series. We now pass to the lacunary tri-
gonometrical\ series, that is to series where the terms different
from 0 aré\‘very sparse’. Such series may be written in the form

N S(ax cos 1y x + By sin ne %),
} W =1

4
}ssuming, for simplicity, that the constant term also vanishes.
When speaking on lacunary series, we shall suppose throughout

Y Hardy and Littlewood [9].
7} This inequality follcws from the mean-value theerem appliad to the
difference « {r) — o {n + 1), where « (x) = 1 log—a X,
%} The first example of a continuous funetion having this property was
gven by Carleman [1].
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that the indices n; satisfy an inequality mepi/ne > 3= 1, i e, Ine
crease at least as rapidly as a geometrical progression with ra-
tio greater than 1.

Given a lacnpary series {!) consider the sum

(2 k.g (ah + b3

In Chapter X we shail learn that, if (2) is finite, the series [}
converges almost everywhere. Here we shall prove the conyerse.
If the series (1) converges in a set of positive measure, the\seyies
(2) converges. We shall prove even a more general theor‘em Let
7" be any linear method of snmmatior satisfying bha; two first
conditiona of Toeplitz (§ 8.1); the third condition n"eed not be sa-

tisfied. All methods of summation used in Ana\l,s §is are 7"-me-
thods,

. : - n
1y 53RV ?raf'k}é o}ogrjn (1) is summableT* in a set E of po-
sitive measnre, the series (2) converges I)\

It must be observed that, when(Weé speak of the summability
of the series (1}, we understand »ti;\a{ the wvacani terms are r¢-
placed by zeros. Consequentiyp\fhie g-th partial sum s,{x) of (1}
consists of the terms as comdux + by sin mex with ne < g 1f By
denotes an element of ihe matrix 7* considered, the hypothesis

of the last theorem may\be stated as follows: for avery x ¢ £ the
series ¢\J

- X\
®) q;;aﬁsqmmp(x), P=0,1,2, .,

converge, and\lim o,(x) exists and is finite.

To aw?id unnecessary complications we begin by the case
when sgch fine of the matrix {Bs) possesses only a finite number
of tem%s difterent from 0. It will be convenient {o consider the
series (1) in the complex form, putting 2¢, = ag — iby, €_e = i 6= O,

% s{z.,k-— — s, £=1,2, ... Let, moreover, B o+ By gua+ o = Relg). It
is easy to see that

e

op(x) = 2 cuemn* Rofl i),

the sum on the right being in reality finite. Since {5,(x}} con-
verges in E, we can find a subset ¢ of E, |£1 >0, and a number

% Zygmund {5; see also Kolmogoroff [2].
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M, suel that |a(x)' <M for p=10,1,..,.x¢¢ In fact, we have
E=F; +~ E,+ .., where £, is the set of x such that |s{0)! < n
for p=0,1,2,... At least one of the sets £, say Eau, is of po-
sitive measure and may he taken for £. It follows ihat

- o
M EL > [opx) de =€ X e RiGm)) +
o =

1£3) e
+ X Rl m ) Rollme i')ft‘-’"("f"”*”‘ dx.
Jy k= i

A\
7NN ¢

Let us deoote the last integral by 2x4;. The numbers 4y, are
the complex Fourier coefficients of a function ¥ (x) which is
equal to 1 in ¢ and te O elsewhere. Applying Sc}&&a&z”s inexghual-

ity fo the second sum on the right, we sod RN By Skia
j +°= L T . I.I:‘ X. %9?’ "7}‘ !
2Tv[;k§_ Peii® eal® Ry DRA(] ﬂk:)}.{l};_m L e
® NV
T e SR
=2% }_; Fea, B RA ﬁk:)"{L 2 ij,k=“[
h=—eer AN A= e
AN Jk
in absolote value. AN

From the condition meiw: > 1> 1 it follows that a number
4= 4(}) exists such thahevery integer m can be represented no
more than 4 times Mn\the form rmyEm, j> 0, £ 0. In faet,
assume that m = nmg* my, j = & Then m > #; > mi2, and the num-
ber of n; satistyifig, this inequality is less {han the smallest inte-
ger y such thad » =2, Similarly, if m =n — 1, >0, then #; > m.
As ming > heswe have m; — ik <<m, i. e. 5y <mAi(A — 1), and the
number of\37 in the interval (m, m}/(» — 1)) is also bounded. We
add thdt\the property of {;} just established is the only thing
whigh'we use in the proof, and that it may sometimes hold even
@;lf’n; 1 ag jo oo,

Now it is not diffienlt to see that the last factor on the right
in (8) does mot exceed {4 (.. 47 1P+ F+1 1"+ ) < e,
whers v, denote the complex Fourier coefficients of 7. Thence,
for v aufficiently large, we have

(6) 2z 3 &a M <{ICL

(T
ok
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In the series (1) we may omit the terms ay ¢os #yx -+ Bysinnxx
for 1 <k <v replacing them by zeros. It does no damage te
the summability 7* of the series considered and can culy change

the value of M. Assuming the inequality (6), we deduce from {4)
and (5) that

+=
MUE 2 HE Y P Ra( e ). ~
Let K> ( be any fixed integer. Since lim R(|ny =1, ,izrj—gyg, I
we conclude that ? N\

K N

K g ™
2 PR} < 207, > lee T 2415
b=—K A K A

A
and, since the last inequality holds for any K,“;}he convergence
of 2) follows. o \

T8 s R Endifon imposed upou™ (B} we proceed as
follows, Let a,(x} be an expression analogous to o,{x) (see (3}), except
that the upper limit of summation in/the’sum defining 5, is not o
but & number Q = Q(p). We také @ very large, so as to satisfy
the two following conditions (i)Ye,{(x) —oy{x)| < 1/p for x¢c E-E,
where the set Ef is ofmeasure < 2-7-1iEl, p=1,2 ..
(i) lim (Bpo+ Bps +... + Bpo)=1. Putting E* = E'+ EF*+ .., so that
EE‘;»% 1|E}, we see that In the set £ — E* of positive measure the
eXpressions oﬁ(x) tiﬁ. 1o a finite limit. But condition (i} ensures
that the s, are also\T™-means, corresponding to a mairix with only
a finite number..ot terms different from 0 in each row, and, in
virtue of the“epecial case already dealt with, the theorem is
establishef\completely.

is) theorem shows that, if the series (2) is infinite, the

seripé ) is 'praetically non-summable by any method of summa-

tion* Considering, in particular, the methed (C, 1), we cbtain:
\tf‘ the series (2) diverges, (1) is not a Fourier series.

5.0. Rademacher’s series. Several properties of lacu-
nary trigonometrical series are shared by Rademacher’s series

W k_Z" aplt), DL,

(§ 1.32). This is not surprising since Rademacher’s functions form
a lacunary subsequence of & complete orthogonal system (§ 1.8.5).
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(i) The series (1) converges almost everywhere if o+ e+
+o <ol () I G+t =o0o, the series (1) Is almost every-
where non-summable by any method T* %),

The proof of (ii) fellows exactly the same line as that of
Theorem 5.4 and may be left to the reader. We need oaly observe
that the system of functions ¢ .(f) = F(8) B}, O<j< &, 0k<lno,
is orthogonal and normal in (0, 1). Q)

Under the hypothesis of (i), the series (i), whose partial
sums we denote by s.(f), is the Fourier series of a fgﬁc,t\lon
F&y e L2(§ 4.21) and moreover we have .\

a
7
|

1 1 h ~
d;f f=spdio0, [If—s,dt~0, [, -<j;'dt >0,
1] a /N

where 0@ < <C1. The third relation) WHSH ol “Wi¥saly
in g, is a consequence of the second, apd™he second follows
from the first by an application of Schyhr®s inequality.

Let us dencte by F(¢) the indefipite integral of f(f), and by
E, 'Ey=1, the set of points where” F'(¢) exists and is finite.
We have proved that, whatever' the" interval 1, the integral of s,
over / tends to the correspoqdjnjf integral of f. Thetefore, the
integral of s.—sp_( over / tendsyas 1 ~, to the integral of f-sy_i.
Let / be of the form (I2<8( + 1)2*), {=0,1,.., 2%~ 1. Since
the integral of w(f), ovey"/ vanishes for jl= k& the integral of
Si() ~ si—1(fy over %8\ equal to 0, provided that n 3> £ Hence,
it [ is of the form Y275 (14 1)27%), the integral of f(f) over /
is equal to the, integral of $y—(t) over I, Now let ¢, 5 p/29, ¢, ¢ E,
‘and let £, ¢ !k,f',(f 274 ({4 1) 2-%). Since se_i(f) is constant over f,
we have

> 1 1 ,

sk_.@r: — s ddt=— [ fdi~Fit,) as ko oo,

':.’; !fki?,, |Ik|?k
~ 5,51, () If the series 5.5(2) is convergent, the sum f(t} of
g series 5.5(1) belongs to L¢ for every ¢>>07%). It is sufficient to
Prove the theorem for ¢ = 2,4,6,.. We shall show that

" Rademacher [i], see also Paley and Zygmund [1], and
Kelwogoroft [8], whbere a very simple proof ia given,

 Khintehine and Kolmogoret! [1] (for the case of convergence),
Zygmund [35].

) Khintchine 1), Paley and Zygmund [{].
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! S F 3
) [ oty at < Mk( 5 ci) k=12 ...
B A=h

where A, is a constani depending only on X

Denoting by s.{f) the partial sums of the series 5.5(1), we
have

1 ‘l .\
2E n 3 - it g
@ [adOdt =2 e, o R o [ A
¢ 2 AN
where A%Gz! L = (o, 2y, + el el el and tkiézsmumma-

tion on the nght ig taken over the set of my, m,, . ,m,];? By, Ty wee s r
defined by the relations. AN 3

o"

0L mln gL 2k, £=1,2,..., £, 1 s r < 2R :1,1\-[-4 =2k

Now 121t $BE ﬁ‘%ﬁ%‘iﬁéﬁg&at the 1nteg1;&tsoon the right vanish
unless 4, ty, .., % are all even, in whieh case they are equ-
al to 1 Thus the right-hand sidesof (2) may be written
2 A o, .:'2?'1 CQE’- Observing;it'hét

\ " w P a ]
2 Adnm, 2r C?H ":"’2 "‘7 2”“ ey +ci 4+ + ca)t,

we oblain (2) with f(f) replaced by sa(t), M. being now the upper
bound of the ratic Aat,\ 28,1 Ap,, .. 5 Since Sy{t)— F () for almost
every {, an appe 0 Fatow's lemma completes the proof.

It is easy\to see that M, < (203128 £ = (& + 1) ... 2k/2% < RE
This enables itsto strengthen the theorem which we have just
proved and “J-show that

(11}\ ?7'16’ Jfunction exp 1 fi{f) is integrabie for every ni= 9.
'i\(ef C=cs+ ¢l +... Integrating the equatlon expuwfi=1+

"J.f2 4 p2 42 + ... over the interval 0 < ¢« 1, and using the
_ Zhequalltles (1) with M. =4&% £=0,1, ... we obtam that
1
3) [ exp p.fode < }jk— (6 OF.

In virtne of Stirling’s formula &' = 2z ¢—%.k*""s, the series
on the right is cectainly convergent it ey C <1, that is if Cis
small enough, It foliows that, for every o> 0, the funetion
exp e {f —5:)* is integrahle if only n— n(w) is large enough.
Since f1<  2{(f — s)%+55], and s.f) is bounded, the integrability
of exp i f? follows,
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5.8. Applications of Rademacher’s functions 1. The
theorems established in the preceding paragraph enable us to
prove some resulis about the series

(1) T a4 X it (an cos nx + b, sin nx),
n=l
which we obtain from the standard series
- N\
{(2) L a,+ 2 (a, cos nx+ b,sin nx) .
n=l AN

by changing the signs of terms of the latter in a quite mebiffary
manner. Let §a, = A(x), a, coa sx -1 b, sin nx = Anlx), m 51,2, ..
Neglecting the sequences {Z 1} containing only a finité number
of +1 or of — 1, we may present the ﬁ%’{gﬁﬁ&d&bﬁpyfg;‘g}m

(3} é; An(x) €al0),

w\/ .
where ¢, are Rademacher’s functions and thg\parameter t, £~ pi2e,
runs through the interval (0,1). If the¢values of £ for which the
series (3} possess a property P form 'a“sét of measure 1, we shall
sey that almost all the series (1},130339:55 the property P.

(i) If the series

(4) 1, @00 X (@ + 5)

=l

\

converges, then almosf’gﬂ,\tke series (1) converge almost everywhere
In the interval 0 < X 2x. (i) If the series (4) diverges, then, what-
ever method T ofsummation we consider, almost all the series (1)
are almost every\ée)klére non-summable T

Let Si(#) denote the series (3), and, if the series converges,
let Si(x), 4150” denote the sum. Let £ be the set of points (x, ¢)
in the gectangle 0. x < 25, 0 < ¢ < 1, where the series conver-
g¢s. wAsSuming that the series (4) converges, we obtain from
?ﬁ?eéfém 5.5 (i) that the intersection of £ with every line x=x,,

£ X, < 27, is of measure 1. Simce the set £ is measurable, its
Pfane measure is 2r, and therefore the intersection of E with
almost every line # = by, 0 ¢, << 1, is of measure 2x; this is just
the first part of the theorem. The second part is proved by the
S&me argument provided we can show that the divergence of (4)
implies the divergence of

Y Paley and Zygmund [1}
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(5) - AR + AUx) + o+ AR + -
for alinost every x.

To establish the latter proposition suppose that the series (5)
converges in a set of positive measure. Then there exists a set
H,|H|>0, and a constant M such that the sum of the series )]
does not exceed M for x € H. Put A.(x) = p, cos (nx+ X}, pa 2k
The series (B) may be integrated over /7 and we have R
oA\

anfcosz(rzxﬁ—xn)dx MIH| .\\

The coefficients of p» in this inequality tend to ~H| Jand so all
of them exceed an ¢ > 0. Thenee we concludg\that the series

P1+P‘:ﬁww apk a&lbral yﬂglréeﬁl(dz}, converges, «epulrary to our hy-
pothe

The following proposition is an i t‘q\hate corellary of (ii).

If the series (8) dliverges, afmost il the series (1) are not
Fourier series.

The theorern of Riesz- Flscher ‘asserts that, if (4) is finite, the
saries (2) is a Fourier seriesd “Wow we see that the Riesz-Fischet
theorem is, in a way, the “Best possible: no condifion on the mo-
duli of o sequence {an, lz{} Wwhick permits (4) to diverge can possibly
be a safficient congut\sqn Jor (2) to be a Fourier series’).

(i) If (4) is}f:mte, then aimost all the series (1) belong to L7
for every g >0\ More generally, for almost every t the function
exp p S/(x) @5, integrable over the interval 0 < x < 2%, however
large » 3323}'1?3.

'I\ét"b denote the sum of the series (4), and let p be so
smafl that the series in 5.51(8) converges. If K= K(p, C) is the
) /78U “of the latter sertes, we have, as in A.51(3),
\ 1
N\ f exp b Si(x) df <L K.
[}

Integrating this inequality over the range 0 < x < 2= and inter-
changing the order of integration, we find that

i o

f dxf exp  S7(x) dt = [dtfexp LSHx)dx < 2= K.

1 Littlewood [1], [2}.
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The interchanging of the order of integration is legitimate since
the intezrand is positive.
24

From {6) we conclude that the integral f exp p SH(x) dx is
L]

finite for almost every f. This establishes the theorem for p po-
sitive and sufficiently smali. To establish the general result we,_
argue as in the proof of Theorem B5.51(ii).

N
AN
5.8%. Let 5.6(4) be finite. In this case it is natural to ask <whether
the furciions §,(x) are continuous functione of x for almost all £, Bat this
is not su. In Chapter VI we shall prove that if a lacanary trigonpmgtrieal series
is the Fourier series of a bounded funetion, the sarles of e@siﬁ’cients con-
verges absolulely. Thuos for no sequence of signs is the B iés
1 ww.dbraulibrary .org.in
{1} =+ sin 10 xi?sin lt}ex—{—...i—n* sin 10701 ..
: AY;
the Fourier series of a bounded fuanction. ";.\
if the series ;'x\
@ Nal 4- o) logt* 2
k=2 PR
fonverges for an 7> 0, then almost qﬂfthe‘sen'es 5.6(1) are Fourier series of conti-
ruous functions, ™

~

As the series (1) shows, the theorem is not true for : = 0.

We require fwo lemqa{

@) Let 5, (x} da a{é the (C,1) means of the series 5.6_(3). If the series
3.6(L) is finite, then, fqr%most every t, we have °r!.t(x) = o(]/logn],uniformb! inx,

Let us put Al =exppx?—1, p 221, eX)=P(x) =2 xexppa® We
will cbitain an ima‘qué\lity for the function ¥ (x) compiementary to @ (x) (§ 4.11).
Let x =40 h{tﬁe funetioa inverse to y:v(x)l. Since log ¢{x}=Ilog 2ux -+
+ px? 2 patddr £ 1, wesee that x = ¢ () <" |/log ¥ whenever x>=1. Lety,
be the ro\t;nf the equation ¢(¥)=1. It followe that ¢ (v}< 1 for 0 <y <y,
and L&Y (1) <7 p " Vlogy for ¥ > ¥, Thence we deduce that ¥ (y)<Iy for
Y ymand ¥ (y) <p hyyiogy for ¥ =36 i & ¥ (3) <y (¥), where y(y}=
~hedx (1, 5 Tog ).

\ ’ Applying Young's inequality to the integral defining s, [(x), we see that

o

2
3) wlo <[ @150 dut [ # K (e — 0} an
1]

6
where K, denotes Fejér's kerpel. Since K,<Cn, the second integral oa the
right is less than

e [ aume (81"
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provided that log n >>p. Taking f such that expp SHuy iw integrable for every
valze of p, we see that the first integral on the rlght in {2) ia fipite, and s
the lefi-hand side of {3) ia certainly less than d'rp. ’rlogn if n is largs
enough., Since we may take p am largs as we please, the lemma fcilows.

(i} If the first arithmetic means for the series 58(2) are O(log ny", the
series

= N
a,co8 nx 4 b, sin nx

@ ‘ . e>0, ~
r:‘::2 (log my'=te
is uniformly summable (C,1). 2\, \

Let us put ¢ =&=0, ey=(logsy ¢ for v 3= 2, hy=h"= {u+u\»)f(n+u,
Cy =t hy, 8ud lot gy {x), 1,4 denoie the first arithmetic rmeana for the
paries 5.6(2) and {4) respectively. Applying Abel's transfomatlon Qwrbe we obtain

n—1
®) wWix)= T 0+ 150 L C+ (= +1) s,,(x)ﬂ
www.dbraulibrary .org.in

Since < €, =C,, the last term on the right is o (1) upitormly in x.

The reader will have no difficulty ia p@\rlng the formula 4 C, =
—-"’ud?"-'v*!-zd by Aﬂyp—}—-‘fflv €13 which)i8 analogons to the formula for
the second derivative of the product of two.i\mchnns In our case < hy==

and so, by {&), A "“
— n—-I
B oyl = Zk"” (v+1)=w(x)A~av _+—2(»+1) () d e,y + o)
=0 n w=0

Given any function l,i’x) ]at us put a(m) = afu) =7 (x}—h(x4ah
Bl =P, =h(x)—2h(x -.{-.-‘s() Yk {x+2u), Since =(0==F{0)=F{0)=0 we
obtain, by Taylors formula, that a(uw)=—a'(x+bu), Bl =4 (x4 % u),
where 0< b1, & Taking *(x) = (logx)—'r%, =1, we oblzip
that a,{l) = d e, = O(u Prog—tiew, 3,(1) =& ¢, = O Flog 2y, Thenee
we see that (v+l)c,.(x}dc,+1—>0 and, by (8},

n = (Q52 PrOTIRR De Lo Lof)= 2;;(“)( + 1) 5y (x) & ¢, + 0{1)-
y RN
Sl\e the partial sums of the seriea with terms (\h}—‘l]a,(x}ﬂq ¢, are
“niﬁlmﬂy convergent, the same is true for the first Cesiro means, so thatb
thélaat sum in (7) converges uniformly, and the lemma is sstablished.

\ 3 14z T+E

To complete the proot of the theorem let af,=a,(logr) f , §,=b,{logn) ¥ .
In virtne of (i), the first arithmetic means of almost all series with terms
ot (el cos nx 4 B, sinnx) are 0)logn, so that, by (ii), almost all series with
terms + (e, eos mx 4 b.sin £x) are wnilormly summable (C,1), i. e. belong te
the ecless C,

We add that this theorem can be generalized, viz. if (2) is finite, almost
all the series 58(1) converge uniformiy over D, 2r) ).

) Paleyand Zygmund {1); sea also Salem [21.
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5.7, Hiszellaneous theorems and examples.

1. Let {a,} be a sequence tending to 0. A necessary and sufficient
eonditicn 1kat {a;} should be guasi-convex is that it should be a difference
of twe convex seguences tending to 0.

If {a.} tends te 0 and is quasi-comvex, then the sequences {aﬂ} and
{nﬁaa} aze of bounded variation. A~

2 1f we put f{x) = X# "cosnx, gixy=%n %sin nx, 0<a<1{ then
F) ~ 5" winra I (1 —a), g (x) ~ £} coslna {1 —e) as x—y-_l—.@.’\...\

[This followa from the first formula In 3.11{1} and from Fh’e.}act that

AEFE Lyt =1L 0gm (8 3.12)). N\
e pE AD
3. Lot g,(x) =1__g+2("i“ Veosnx, 2= 1,2, ey & #1 < 7. The fone
n=) " oat www.dbraulibrary.org.in

tion g.{<i vanishes in the interval (¢%,n) and is equah‘te a po ynomial of
order £-—1 in each of the intervals ((8 — 2} 4, kff)z.@f—'ﬂ hk—2 0, ..
== gmx L4
[Congider the function Flx) =m2 ik—m*“(} § 215 apd the expression

Sulx = m — M g (e L (k— D BF . T Felae n).

The result may also be obtained by':repeated application of Theorem 2.11
to the fanetion f,(x} (§ 1.8.20) AN

4 Ha,lra, 0, the seriq’;y Y a,connx is a Fourier-Rismann series,
Szidon [IL e

5. I @, 2a,,, -0 ‘1’”1\3 a sinnxel, then T a, connxel.

6. (i) If {aﬁ}, anl\l{\]‘é’ convex, the functions f(«)=X &, cos sx and F(x) =
‘=Eﬂ,, #inAx have ephtinuous derivatives in any iuterval (s, m—e), = >0, (ii) 1¢
{ﬂn} is only monqtofjic; this is not necessarily irue, and the functions may be
almost everywhere ton-differentiable,

[} follf#e from the fact that the series differemtiated term by term

are nnifopdly “summable (C, 1) in (,=—¢). To prove (i) observe that the
second §&§ in 5.121{1) behaves like a lucunary series if X, /A, >A3>1 and
apply,t}ie following theorem|.
(N7 Let the deries 5.4(1) be a S[f]. I f(+} exists and is finite in a set £
\'a}ﬁoaitiva meaaure, then ni (@ + b3 < =,

[This follows from Theorem 5.4 since the differentiated seriea is sum-
mable in £ by a method .

8. Let 5(t), 4;(f),.. be Rademacher's functions and let T ¢? < e, () =
=Ly 00t), Ot 1. Then m, e} < M 71 <M, Rle), @ = 0, where the
tonaianty m, and Mﬂ depend ooly on =

[The second -inequality foliows from Thecrem 551 and from the fact
that -:Tjaa{f; 0,1 = A /1 s a non-decreasing function of a. To prove the first
lnequality for 0« a <7 2 observe that SJ(’: s a multiplicatively convex func-
tlen of .
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9. Let 541} be a E[f} and let nk_!_ﬁnk)l}l. Then we have ihe in-

equalities m_, Ralp) <M A6, 2] I M, Melp], where pi = af, -+ {;i wnd the con-
y .
ptants m and M depend only on a and i,

([t is sufficient to prove, for lacumary seriea, a theorem analogons to
Theorem 5.51{(i). The proofis similar if, for fixed a, & 18 sufilciently large. In
the general case we eplit up the series eonsidered into a finite nomber of
seried for each of which the oumber 4 is largel. a

10, 1f the series 5.4(1), with n, ,/#, =1 2> 3, converges in ap \interval
{(z, ), then the series converges absolufely. Fatou (1] NS ©

TLet a, coB myx -+ b, sinng X =gy cos (1 + X} It is ensily #86n geome-
trically that there is & point x* in (2,8 such that cos {n, x* G X4 > s> 0 for
& sufficientiy large. The theorem holds for A >1. Ses Z gin nand {8

11. The points of convergence and those of diférgence for the series
Z (sin 10"x)in are everywhere dense in the interval (0,2z).

www . dbraulibrary .org.in A\,

12, Let 0<Za <1 and 0< . The saﬁes@‘?’ eint gif% cODVETERS €Ve-

=1
rywhers if 2> 1; the convergence is duiferm if Ya-4-f>>1. Hardy {1

18 I 1{Y%a-+B2 the sum, of the previous ssriss belongs to
Lip(4a-+-8—1) Hardy {1}, Zyg mand [7].

[Apply van der Corputs leminhs and an argament similar to that of
§ 5.32). a7

N  m
i4. The function F(x) = x-+lim f I] {1+ cos & tydt ie a continu-
P4\ m—-}ﬁuo P——:l

ous funetion of bonnded Ygl‘i}t‘mn with Fourier soefficiants = o (1/n). F.Rieaz {3}
{The product Pm%ﬁ—}—casatt) {1+ cos4™f) is a trigonometrical poly-

nomial of order oz -!:"“+4”'"1-]—...+4. Since the lowest term of the poly-
nomial Py, — Ay 3= 7 cO8 4™1¢ ia of order §, = P L

P i8 2 partial Sum of Pmyv L& {p,)is 8 subsequence of the sequence of past-

al sums of @'trigonometrical series (%) 14 a, cos x + @, cos 2x ... Let P,{x)

be thg\in.tégral of p, over the interval (0, x}, and let y, be the number of
nop:ya}lshing terms in p,; it is easy to gee that Tmt =8,—1 i &

ki = T = 3 —Tn o)) Tmga— T = 87 Sinee py,,—p, consists of
B\ terms each of which does not exceed 1 in abasolute vaius, we bave
NS 1Py — P | 8" Bpa1 = O (8™/4™) und 80 the function P{x) =lim P{xi=Prt
+ (Py— P) .. is continuous, Pm(x} is non-decreasing apd so is its limit

it follows that the funetion F(x)=— x4 P(r) i¢ continuons and of bounded
variatlon. To obtain & [F} we reject the linear term from the series (*} in-
tegrated term by term.' Sinee a,m=1, tha cosftivienis of &[Fj are not o (1/m]-
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The alselute convergence of trigonometri(ﬁi’%eries.

8.1. The Lusin-Denjoy theoreni. ‘Pﬁ Hueho%%aélygen e ot

the series )
- D
1 Z !a,,;+|bni}..\"

impliss the absolute convergence of the series

(2) ta,+ Z (a,. cos st + By sin nx).

The series (2) may Jie absolutely convergent at an infinite
set of points without 1) be’hg convergent. A simple example is given
by the series = sidyllX; whose terms vanish from some place
onwards for everyh\y commensurable with #.

If the sef.qfté,{s(“é) converges absolutely in a set E of positive
measire, theyseries (1) converges'), Suppose, for simplicity, that
a4, = 0, andNet a;cos bx 4 &, sin kx = py cos (kx - x), where pe =0,
2 2 Uy W g .
sza; + The function

(3\) a(x)-ZpaIGOS(ﬂx-f-xn)l

\s tinite at every point of E. Hence there exisis a set ¢ (C K,
|€ >0, such that « (£} is bounded on &, =(x) <M say. Since
the partial sums «,(x) of (8) are uniformly bounded on ¢, the
Series may be integrated formaily over ¢

) i’jpnflcos(nx—}-x,.ﬂdxg:’lﬂé].
e

) Lusin 3], Denjey i}
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To prove the convergence of p, -+ p; ... , which is equivalent to
our theorem, it is sufficient to show that the integrals /; on the
feft in (4) all exceed an =>>0. Let [, be the integral analogous
ta fn, with |cos{nx 4 x.}| replaced by cos®(#x + x.). Since 1> I,
it is sufficient to prove that /> ¢ For this purpose we use the
formula 2eos® {(x + x.) = 14 cos 24x -cos 2x, — sin 2rx - sin 2,
Since the Fourier coefficients of the charaeteristic function «f
the set ¢ tend to 0, we obtain that /> 1|, which complates
the proof, all /; being posiiive. <\

The set E in the theorem which we have egtablz’ahed ig of
positive measure. This property, while sufficient for' the conver-
genca of (1), is not necessary. The problem of\ necescary and
suffment cggdltlloglgalg?eéggm be unsolved.

rauvil

6.11. We shall supplement the previols theorem by a few
resuits of the same character. Supposg that, for the series 8.1(2},
we have p; + p; + ... = o0, and let £ Pejthe set of poinis where
# (x) <0, The complementary sei\f#; where the upper limit of
the sequence {2,(x}} of conlinucug™unctions is egual to + oo, is
a product of a sequence of opeiy sets; for if On denotes the open
set of points where at least one of the functions «,(x) exceeds N,
we have /=0, G,.. Ilfolows that £ is the sum of & sequence
of closed sets. None  6I\these closed sels contains an intervalj
for otherwise we siionld have p, +p, + ... <oo. It follows that
all of them are nob-dense, £ is of the first category, and there-
fore, if 6.1(2) converges absolutely in a set of the second category,
even if it is Q}i measyre O, the series 8.1(1) converges?).

8. 3.;“i‘here exist trigonomeirical series sbsolutely comver-
geat if b perfect set but not everywhere (§ 6.6.1). On the other
hand as we shall prove, there exist perfect sets / of measure 9,
owhu:h as regards the absclnfe convergence of trigonometrical
séries, resemble sets of positive measure: every trigonometrlcal
series absolutely convergent in P is absolutely convergent every-
where, In particular Cantor’s well-known set has this property.

A point-set B will be called a basis, if every real x can be
represented in the form o x 4 oy X, + ...+ o %, where o, % -
are iniegers, and X, X; .. belong to B. We may also write

Y3 Lusim [11.
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X=6 X +...+ €y Xn, Where 5; =+ 1 and the x; are not necessarily
different. We require the following lemma.

Let B be a basis, and let B* = B} denote the set B translated by
a number u. There exists a set S of the second category such
that, for every y e S, we have y = oy X+ o, 5+ .+ op X5, With o
integral and x} ¢ B*'), To prove this, we observe that for everyx
we have x = a(xf — @)+ ay(xi—u)+ .., 1 e, x4 ku= 2 £}
+axi4 .., where £ =~£, is an integer. Let £, — co <m0,
denote the set of x for which 2, —#. For any x may exZi%t seve-
ral k,; we choose one of them. At least one of these sets, say E.,
is not of the first category, and we may take for 2SN the set Ej,
translated by n,4. We may say that B* i‘sﬂ%“pﬁ%si;fgﬁb%ry‘org‘m

If B is g basis, every trigonometrical seriessabsolutely conver-
gent in B is absolutely convergent everymhere?). Suppose first
that the frigonometrical series consid&éd contains only sine
terms. We prove by induction thaf\'sina(e, x, + ..+ em Xm)|<C
< stn nxg [+ | sin x|+ ..+ | sinsxs’|, if & =+ 1, and the result
follows. In the general case Jetiz be any point of B, and let
X=y+4iu. We have a,cos nx 8y sin nx = a.{u) cos ny + &.(¢) sin ny,
where a.(u) = a, cos nu -+ By 8in 711, ba(k) = bn cos nu — d, sin na.

The absolute conwgegence of the series at the point y =@
implies ' @,(u) | 4 a,(u) €)%< ~o, and therefore the series &,(1)siny +
+ 8,(u) sin 2y +... con\@rées absolutely in a set B obtained from B
by translating it ¥yy»—#. In virtue of the lemma, B* is a basis for
& set S of the, §8eand category. The argument which we applied
to sine serigs \shows that &,{#) sin y 4 b,(w) sin 2y -+ ... is absolutely
ConvergentN\jw S, and consequently, by Theorem 6.11, everywhere.
The same ‘may be said of the series with terms aq{z)eosny+
+ bx{@)8in ny=a,, cos nx+b, sin #1x, and the theorem is established.

Y Y613, To give an example, we shall shew that the Cantor ternary set C

Qeonstructed on (), 1) (or on any other interval) is a basis. More precisely, we will

Show that the set of all possible suma x4y, with xe¢C, yeC, fills up the
whole interva) (0,13%. This could be dedaced from the fact that the terpary
Aevelopment of any x¢C can be written jn the form not containing the digiti,

'} Thenea it is not difficult to deduce that B* i3 itself a basis (§ 6.6.2),
bat thig is not necessary for our purposes.

) See Niemytulks (1], for the case of sine sefies.

% Steinhaus f4]. More general results will be found in Denjoy (2],
Mirimanaott 1.
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bt 2 geometrical proof is more illumicating. Consider the sei I of pelnis
{x,¥) of the plane such that xe, yeC. The set /" may bs obtained by the
following proecedure. Divide the square ), with oppasite corners at (0,0} and
(1,1) into nine equal parts, and, removing the interior of the five squares
forming & cross, consider the sum (), of the remaining four corner mguares.
For any of these corner squares we repeat our proceduore, and let ), be the
sum of the new cormer squares, and so on. Plainly £ = (@, ... The
projection of any Q; on the diagonal jolning the points {0,0) aund {1, 1) fills am
this diagopal. In other words, any straight line L, with the equation » Ly =>h,
O h a1, meets every ; ut one point at least. Since the (; are elgsgdhand
form a decreasing sequence, SL,#+0 for 0 R <1, and this s ju st\what wa
wanted to prove,

S
7%
S

6.2, Fatou's theeorems. The problem gf’the absclute
convergence for sine or cosine series has a very simple solution

in the pasabwhdrbthey mogidi of the coefflmQ:l;s form a decreasing
sequence

g
S

If the series @, cos X + g, ¢08 2% 0. |8, 3> |2y 3 .., is abso-
litely convergent at a point x,, then |8y’ 4| ay| 4 ..<oo. The same
is true for the series a,sin x -+ ag‘s“ljr’r 2x 4 ..., provided that x, £ 0
(mod =}'). To prove the first.part of the theorem we may plainly
suppose that 0 <Cx, <« Ffom the hypothesis it follows that
18, cos® X, + | ay ] cos® 2x,48,.. < oo,  Since 2eosgPnx, =1+ cosny,
where y, = 2x,, and sibce the series |a,|cosy,+ |4, cos2y,+..

eonverges (§ 1,28), \ e“resnlt foltows. The second part ia obtained
by a similar argiment.

6.21. The set A of points where a trigonomeirical series
6.1(2) conyerges absolutely, possesses curious properties. Let A
denote\gfe set of points of absolute convergence for the series
conjugale to 6.1(2), and let B and B be the sets of points where
thevseries 6.1(2) and its conjugate converge, not necessarily abso-

lu\ely It will be convenient to place all these sets on ths cir-
cumference of the unit circle.

Ewvery point of A is a point of symmetry for the sets A, 4, B,B?).
The proof follows from the formulae

an(x-+ )+ an{x— Ry=2a,(x)cosnh, b(x-+h)—ba(x—h)=—2as(x)sinnrk,

% Faivu [2). The proof of the text im due to Saks.
f Fatou {2].
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where the notation is that of § 6.12. From the first of them we
deduce fthat, if | a&(x) i+ ia{x)|+..<es, and if the series
afx — &)+ a, (x - k)Lt .. converges, or converges absolutely, so
does the series a(x +A) +a.(x+A) + ..

The theorem remains irue if we consider the points of sum-
mability, the ares of uniform convergence, ete.

6.22, f A is infinite, then B, and similarly B, is either of >
measure B3 or 2=, If x e A, x4 h ¢ A, then all the points x ~l§h,
x4+ 2% x4 Bk, .. belong to A. Since A is infinite, & ,H(ﬂif"‘ he
arbitrarily small, and so A is everywhere dense. Suppaesevthat B
and its complement C are both of positive measure;{ and let x,
and x, be points of density 1 for B and C respectively. There
exists ap ¢ 0 such that, if any intervé‘iWﬂ“‘f‘ﬁ‘lﬁﬁ?@ﬁﬁt{é‘iﬁ#n&,
we have "[B|>1|/, and if any interval F, | A\ 2¢, contains &,
then | I'Ci>1|P|. Let I=(x, —s=, x,+¢), andiake an x, belonging
to A and dislant by less than fe from ibe middie-point of the
are (x,, x,). The set B reflected in¢%vgoes into itsel, and /
into an imterval f,|F'|=2¢, containifg. %, Since the inequalities
|[IB|> ¢ b 1FC] > 1|1 are incoﬁ;:pétible, we have a contradiction.

6.3. The absolute qoiiﬁargence of Fourier serles. We
begin by the foliowing tgorem due to S. Bernstein.

If felip«, a>%;\"tﬁeﬁ S [f] converges absolutely. For o =%
this is no longer trgze\y
Suppose that¥6.1(2) is S [f]. Then
AS

o ;{:fo +h)—flx— k)~ 22 balx) sin nk,
'%“ 1 an .,
'_—f [flx+ k) —f(x—B]Pdx =4 p.sin® nk,

A=l

PR
Swhere o7 = a2 -+ b2 The left-hand side of the last formula is <{ Ck*,
where C, C,, ... denote constants. On setting & = =/2N we oblain
two inequalities

id 2 wh T
ansirﬁﬁ « CNT*

@ X lsip? 2
) Hélpnsm 2N§CN s

Y Luasin [1].
) Berpstein |2], (3]
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Let us now assume that AN=2" v=12,... Taking info
aceount only the terms with indices 7 exceeding 1 N, we obtain
from the last ineguality

2

(3) PTG Tol kel
n=y""lp
Thence, by Schwarz’s inequality,
B ;v w2 Iy W by
@ I ow<( I A 2 ) <arO
A= a=2""l11 EE LN A\

and finally ) \\

() W dbr Py FETS o 3 dR

n==d vl iy w=1 2N\ 7

The last series is convergent singe{ \> L. The proof ot the
second part of the theorem we poqtpene to § 6.33.

6.31. ]ff(x is of bounded mrmtmn end bpelongs fo Lip=
Jor any posifive o, Z[f] r:onfaéfges absolutely '), That the second

condition imposed on f is not'superflaous is seen from the example
of the series 8

(1) L yonnx,

which, being t'hé;"E"Bllrier series of a function of bounded variatien,
indeed of atgjﬁ;bs’olute]y continuons function (§ 5.12), diverges abso-
lutely (§6:2).

L&t 'w (8) be the modulus of continuity of f, and V the total
vaﬁr\iﬁ}ion of f over {0, 27). We stari from the inequality

. \¥4 N

QO ké:l[f(x+%]—f(x+(k~l>%)_r~<
/N(N)é f(x+k"') f(x+tk )l V"’(T«E)

which we integrate over {0,2%). On account of the periedicity,

Yy Zygmund [8]
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replacing x by x4 ¢ does not affect the value of the integral,
and so all integrals formed from the left-hand side are equal.
Hence we have, by turns, with ¥ =2V,

= _ e _
3N f(x+ ) (x -"_-)] dx < 25V (_)
-;/ A 2N e A
- O\
522 sint 21 e : e
2 on sin’ 2V<CA Zp,,sm 2N<CN O
z * ot t z we '
DTS ot 2 S w2
p=nvleg R AT “'( 3

EPR < C 22_"“ WG dblzéul"brary org.in
fr= v=1

6.32. The problem of the absolute coQuergence of trigono-

metrical series may be generslized as folows. Given a series

6.1(2), we ssk about the values of thé\eéxponent § which makes

(1 szn |B + ;:'z:,z B

tonvergent. Theorem 6.3 is specml a case of the following theorem;
it is, in fact, the most impoctant case of it.

If felipa, 0< aw >1, the series (1) conwerges for every
B> 2/(2x 4 1), but né\\necessanfy for §=2i2s 1) 1)

The proof of he first part resembles the proof of the first
part of Theorgm8.3. Let v = 2/(20 4 1). Bince 0<Cy <2, we may
also assume,'t\bﬁi 0 <<f<C2, Starting with 6.8(3), and applying
Hilders ;{e@ahty we obtain

o

8 s 1-3e
~ zpm(zp} (2 1) <an
"\ » ¥l =11
ére 1-3i1 < O and an argument similar to 6.3(5) yields the cou-
Yergence of ru R I or, what is the same thing, of the series
(1. This gives the first part of the theorem.

6.33. The second part of Theorem 6.32, and of Theorem 6.3,
Is a simple corollary of the resulls obtained in § 5.3. Tt was

W{1—3{7)

—_—

) Bzaez (21,
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proved there that the real and imaginary components of the first
of the series

aa em lopgn {q E”‘ log a
————— mx < N - LE
(1 gz piate € 0<a<t, iz (n iog n} !

belong to Lip 2, and it is easy to see that, for these components,

the series with terma p'}",” mH) diverge. The components of {he 8€=\

cond senes in (1) belong to Lip 1 (§ 5.33), and the series with

terms p,’ diverges. PR N,
6.34. If f is of bounded variation and also feLip &\ 0< a1,
the series 6.32(1) conwverges for 2> 2/(2 4+ =) ). W

The proof, which is analogous to that of The@rems 6.31 and
.32, maydbeatdferea ytREEdbhder (see also § BB

6.35. Let F{x) be an absolutely cpgtituous und periodic
function whose derivative £{x) = f (x) bqlongs to 12

If g, b, are the Fourier coefficiputs of f, those of F will be
— bufn, apfn. From the inegualities,

la.| 1 ( R AT T | 1
e —— e —— et T e 2 I
n S Bn+{§)l, i (b,, + " )

we see that Z [F] converpres 'absolutely More generally, if F 5
absolutely continuous aid F' e Le, p>> 1, then S[F] converges ab-
solgtely *). The pr f\remams essentially the same as in the case
p =2, if, instead l;%sel’s inequality, we wse s more general in-
equahty, due_to Young, ‘which will be established in Chapter IX.
It is howewer much simpler to deduce the theorem from Theo
rem 6.31 oh\ervmg that, if F'e L7, p 3 1, then F satisfies a Lip-
schitz ‘oqnﬂltlon of positive order (§ 4.7.3).

\The resuit which we have established is, in turn, contained
in\{he following theorem

M
\

<Q

) 836, () If F(x) is absolutely continuous, F'{xy=f{(x), ard
|f1 log® |f| is integrable, then S [F} converges absolutely ®. It will
be convenient to postpone the proof of (i) to Chapter VI, where

we shall obtain this theorem as a corollary of the following jm-
portant result due to Hardy and Littlewood:

" Waraszhkiewicz{l;Zvgmenad 7).
) Towelli {2].

H Zygmund [4).
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(i) [f 2[F) and S[F] are both Fourier series of functions
of bounded wariation, & [F] converges absolutely,

Here we only observe that the integrability of {f[{logt Ef‘)’_"
€>0, would not be sufficient for the truth of (i}, For if we
take for £ [F] the series 6.31(1), which converges absolutely only
at the points x =0 (med =), we have f(x) ~ Lixlog? x as x> 48,
(§ 5.221), so that |f (log*|fI} is integrable for every ¢ >p.

A

6.4. Szidon’s theorem on lacunsry series. /The“fol-

lowing theorem on the absolute convergence of Fouriér series
bears a different character. "G

if a locunary trigonometrical series www,dhﬁ&ﬁlibrary.org.in
{1} 2 (2z cos re X + by sin #yx), nk+(n¢ =N
=1 N,

Is the Fourier series of a boa}zdedfmdfon'\é(x), |1 M, the series
coliverges absolufely 1), o\

Taking, instead of f(r), the\functions f(x}= f(— x), we
may resirict ourselves to purelygoSine or purely sine series, e. g.
to the former. The idea of thé: proof consists in considering the
non-negative polynomials .

f
2 P{(@jg\‘— ﬂ {1 4 ez cogm, x),

Where &, == + 1 and\h& positive integers m, satisfy a condition
Mg [y > 0 7 3,"Mﬁltiplying out the product £y we see that it con-
sists of the ecomghant term 1, and of terms 4, cos vx, where v = + i, -+
Eomy, *5;}?;,} 20, my, <y, < < my; < M. From the last
equa{ioq\ire‘see that v s contained between my(l—p—  —p—2— )
2nd ”?k_,h +p4pt4 ), i e. between mp(p — 2)/(;x — 1) and
m*j’t’{@"* 1). Therefore, since p 2> 3, the numbers imk,i...:i—_m,,j
CQreesponding to various sequences {k; are all different; and, if
Is large enough, n = p(e), the indices v corresponding to A, =40
concentrate in the neighbourhoods (ma(1 —e¢), m(l+¢) of the
Rumbers my, where >0 is arbitrary.
Returning to the series (1), take ¢ so small that the intervals
(rl — &), my1 + €), £=1,2,..., do nol overlap, and an integer r
such that & > p.(c), Put ml = Birpey B=1,2,.., 05 r—1,

_—_

D Bzidon [2]; for a generalization see Zygmund [8).
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and let P{(x) denote the polynomial (2) formed with {m},
1< k<L and c = sign Grss Since m 5/ m > 1>p.(<), we obtain

in in
! - N
@ Siavri=t[ 10 AOm e < [P0 dx 2,
L8 | ] L]

since the constant term of PI(x) is equal to 1. Msking [ oo,
we find that each ot the r partial series into whieh we have deg
composed the geries ', + @'+ &2 | +... converges. Thig coal-
pletes the prooi. \)

If {1) is & pure sine serles, we consider, instead 0{:(‘2), ane-
logous polynemials, with cosines replaced by sinas.(»’.’;’

6.5. Wiener’ rem. It is obvions.fh&t the absolute
con%‘%‘“ﬁ‘g’@ﬁl&'&%ﬁggq[?f}%%ﬁ point X, is notaNocal property but
depends on the behaviour of f(x) in the whole interval (0,27)-
However, if to every point x, mrrespond{a neighbourhood . of %
and a function g(x) = ge(x) suck that QX {g]) converges absotately,
and (1) g (x) = f(x) in {., then € [f§bonverges absolutely’).

By the Heine-Borel theorgfdwe can find a finite number
of points X, x,, ... X such thaf:i’he intervals 7, [, .. /., overlap
and eover the whoie intervaflfﬂ & x < 2n. Liet £y, = (i, ). With-
out loss of generality weN\may suppose that < Tp:< ey <To
k=1,2,.., m, where fipl, Unia)= (i, 7;). Lot axx} be the periodic
and coatinuous fudckivon equal to 1in (Th_:, #x41), vanishing outs
side (15, v:) and\liftear in the intervals (s, vh—) and {eri Vih
It will be readily*seen that A,(x) + A(x] + ... + Jn(x) = 1. Since Aa
has a derjuﬁt}va of bounded variation, the Fourier coetficients
of hy al‘ﬁ‘«{@.\;rg), 50 that € {ks] converges absolntely.

08 E [Frd= Sgh, )= S [g, 1 SPul, we obtuin that & [f )
converges absolutely {§ 4.481). To prove the theorem it is suffi-
clent' to observe that S[f1 =8 [f (A 4+ o+ la)l = S[F2d+ T

"'\;-'r ([ f R,

6.51%), Lel the Fourler series of a function f(f) be absolutely
convergent, and let the values of f(t) belong to an interval (2, )
If ©{(2) is a function of a complex variahle, reguiar at every point of
the interval (o, 3), the Fourier series of ¢ {f(t)} converges absolutely.

' Wiensr {i].
) Lévy [I], Wiener [i].
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for e
Let f{H)y= ) c, e, fry= 3 o0 en k=0,1,2 .. Since
Pl —e

&(f* is obtained from £ [f] by formal muftiplication, it is easy
tosee that {f ...+ c [+ ¢, '+ e | +... =M, then ... + e+ P+
+IcE*)|+... . M¥. Suppose that the series plz)=ay o 2+ 224,
converges for 'zl<Ir, In the ease M <7 the theorem is fairly
simple; for the series w, -+ a, f({) + o, fFH{£) + ... converges unifor-
miy, and, if v, are the complex Fourjer coefficients of 5 {f}, then

T oom 5 T3S Wiy 5wl

=g e 2 al< X3 jud =2 el X |aR

k=0 A= o n=—sc

where the sum of the last series is < 2,4 |« | Mp|ay | ML .. <co,

Let ¢, be an arbitrary point of the twterealb ity et ar R erg Mo
Prove the theorem in the general cuse it is sﬁ'ff}cient to show
that there is a function g () such that & [p {g}]> converges abso-
lutely and that ¢ (¢)= £ (¢) in an interval (Egph, £y + ). Suppose,
for simplicity, that 7, = 0 and let F(0) =& “Withont real Ioss of
generalit~ we may soppose that u 20y for otherwise we have
PO = lf (O —atu =@ {/i(B)}, Where fi(t)=f(&) —u, 9,(2) =
=% (z+#), and we may consider the-functions f;, 9, instead of f, 4.

Let 9 (2) = o, + o,z ... be eonvergent for iz|<r. In virtue
of the special case already dealt with, it is sufficient io construct
& function g (¢) with Foupiercoefficients cj, such that g () = f (£
in (~ & &) and that ..,.ﬁ—}c’_li + |chi4icli 4 ... = M < r; for then
E e !gd] will be ahsél@tély convergent,

Let & (/) = 2 (#)\be a continucus periodic function such that
DA =1 fon O¢ <p () M) =0 for 20 < £ < 5, (if) A ()
is linear iq'\;thé intetval (p, 2p), (iv) *{f) s even. If I, =1/
re the complex Fourier coefficients of X (£), then I, = 3p/2x,
fn= (2 simM, o sin 3, pr)imp n?, n -~ 0. We shall require the fol-
lowing, ',r::elations

N tos +oo .
\”1(;1) n_:,_\_.mu;;m A, @ ,,:%;”ﬁ — & -0 asp-0,
where 4, B, ... denote constants independent of p. To prove (1)
we observe that from the inequalities ;sinu|<1, ,sing < |u),
we obtain !/, << 2 ent, |l.!< 8p/25, and so, it N=[1/s]+1,
the sum in (1) is less than

3p Y 80 S 2 Y
So T2 42 T <14 Np 4 dfrpN < A
2% A=19%  a=Np1mp At
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Now X —_, ig the complex Fourier coefficieni of the func-
tion A (f) (¥ —&9). Considering the real and imagiaary parts of
the derivative X (f) (1 - &) —le"h (f) of this function, we easily
find that the total variation of this derivative over {—n,7) is
upiformly bounded, and so, in virine of the resulis obtained in
§ 2213, we have |£ —_ 1< Bin®. If v is a positive integer, the
series in (2) is equal to

A==y R=—roe eyl A=—y

i —y=1 e ¥ e N
S+ I+ )< ie-t, 4283 Loprdd)
A=l £

Taking v large enough we have Q<ie If @ 0, then
M Pol-0, and so £ >0 for every n. Hence, for i'géd v, P<{s,
P+ Q<& if o is small enqugh, and this proves{2).
“ﬁb‘f‘g%a%@er%%‘int%ger which we shall défiue in & moment,
and let ¢, = u, + v, where 8, =¢,, v, =0 f0n\p| < g, and 2, =0,
Up = ¢ for |p|>¢. Since f(0) = L ¢, =0y ;[ <eo we have

S
Zup

= g

1da\"
<rf34, B lv.l<r/34
R

it ¢ is large enough. Denotipg"l‘b{; d? the Fourier coefficients of
the fanction f{#)2.(?), we have

‘\ e
\’\ dﬁ =p_2ﬂ: &p Iil—-p’

oo o

oo
PR wh,

o | g i
+ Z‘ 2 vl =S+T,

t\" el p—.—"-—
;:N“" Foe o e r
v ] v .
TRZ Z it l= 3 o] T |#]<gy-A="r,

=

AN | g R 4 |
&\l S= _Z qucp(z =+ ln)l < 21X eolbnp — ");‘+
) 2 fi—=metm | P . H Azm—og | Be——g .

-+ q
+ X k] FZ_‘qcp =5, + S,

It it plain that §, <<Y/,r, Since |lp — ln] < Ylnep — dnpps |+ oo T
Hlr b for p>0, |bp —la) < [ oy — bnpet ] v+ llngr — b
for p<<0, S, is less than a multiple of the series (2) and 80
teads to 0 with p. If p=p; is small enough, then S, <'/3#
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S+HT S+ 85+ T<Yyr+Yyr4Yor=r. Hence, putting
gty =fiH ho (), cn=4db% h=p, we shall have f(f)= g in
{(— /A k), 2|cn! <r, and this completes the proof.

As a corollary we obtain that, if € [f] converges absolutely
and f(x} = 0, then & [1/f] converges absolutely.

8.8, DMiscellaneous theorems and examples.

1. The set of points where the series T #) sin ol x convergea ap.gﬁlq-

tely conlains a perfect subset. e
iConsider the graphe of the curves y — ain ! x]. by

2. () Ivery measurable set of positive measurs is a basis;?(ii)"every ast
of the second cutegory is a hasis. WWW,dbgai{ﬁbl‘ary.Ol‘g-iﬂ

[Let £ be an arbiirary set of positive measure, ’and)x eF, veE. To
preve (i} it ig suffielent to show that the set of the diffegeutes x —y contains
an interval, To show this let ), denote the set £ ;r@a{ated by k. Consider-
fug the nsighbourhood of a point of density 1 for the'set £, it is easy to show
that £ E =0 it h is suffiefently small. This ttlB;J:mlIl is due to Steinhans
[5]. The proot of i) is similar].

8. & recessary and sufficient co,ngh‘t:iun that the Fonrier series of a
function % {x} should converge absolutgaiy';ié that there shouid exist two func-

A N n

tions f and g of the elags £? sugh‘th'a't 1 (x) =2lff(x+f)g(f)dt. M. Rieasx;
N 1:0

e6 Hardy and Littlew oo, [8).

[That the conditiol “ia “pufficient follows from § 2.13. Let ¢, be the
tomplex Fourier coeffivients of /; to prove that the condition is necessary

consider the functiops‘with Fonrier coelficienta fey [ and ie, i* gign -

4. The ch.ldl’ti}Jﬂs of Theorama 6.3—85.32 ars unnecessarily stringent. Thus
Theorems 6.3 afify 6.2 remain trne, and the proofs unchanged, if we assume
that fe Lip e{2%" In Theorem 831 we may assnme that the function f im of
bounded yad tion and belongs to Lip (s, 1).

5.4 PLet 0<<as 1, 1S p<2 If @, b, are the Fourier cosfficlents of an
felfo de, p), then S(a, P+ |8, )< o for every p<pifp(1+a)—1). Szasa 3]

\/ [The proof is similar to that of Theprem 632 if, instead of Parseval’s
f‘elalion, we use the inequality of Hausdurff.Young which will be established
In Chapter IX].

6. () If felipa, 0<a<C1, then ¥ nﬁ—_’—"-r'{i a,|+; &, )<<~ for every f<Za,
Hardy [4). Giy 1t f ia, in addition, of boanded variation ther n?'&(j a, ! b <=,
i) 1 fe Lip (o, p), 0caCt, 1 p< 2 then Enl(la,i+4]8,]) < for every
T<e—1/p.

[Te prove the first part of the theorem consider the inequality 6.3(4)L.
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7. Let f(x) = Z __._-_H,;, whers 0 < o<1, and & —1 ie positive
A=z ‘{M-l (log n)

and enfficiently small. Then the real and imeginary parts of f are of bovnd-
ed variation, belong to Lipe, and vet Zpir—-w for k=242 ~a). It follows

ibat Theorem 6.34 cannot ba improved. Fqr the proof see Zygmund [7].
Ses also § 5.7.13,

8. Let a8, be the Fouarier zaefficients of a function f(x) and ],K
tp= 1) =Ypr g b o py Where p, 20, bl == ol L B

(i) U |F{x}) <1, then £, < (2r 4 1) (ii} For every n there is afﬁn\ction

f(x)y=F(x} such that t, ng‘m ’, where A is a positive absalute congtant.

See Bernateln 181, whers a litile more is proved, viz. thk‘t for f we
may take a trigonometrieal polynomial of order #, < "‘.

{{i} followa from the inequalities of Bessel and ‘cchw;{rz To ohtain (i)
let gdx)= g, {x} = 9:(€) 208 x + ... 4 p,{#) cos nx, where/ f}w ... are Radema-
cheys.fundbivaslilsagy org.in

1 i F i \ }

[dtflg((x}ldx_[dxj - F 8 1 ;mj &-@Yﬁx—r . cos? ) dx =

- % s.'Qﬂ

=%m, f{coa’ £y (sin® x4, )“3} d:@ ‘;i;m.j {(cos® x+sin’ x)—{—...}l"dx—f“ms“"r’

(8§ 57.8, 4.13(3)). Let f; he a vame at ¢ such that the integral of g, (x}!, over
{0, 27) exceeds v:min“, and et dy, b, be the Fourier coefficients of the functiof
fix)y=sign gr‘{xJ. Then i"‘t
\\w
E(I a | £ )y.Zwkuouaker = éj Fg e =
W, o
» Fard

> \ = }f ! g,n(x) (dx 2 mln‘f{
The idea of the proof is taken from Palsy [2], where it is applied 0

agafher probtem. The result may be used to prove the second part of The-
N azem §.3}.

) 3



CHAPTER VIL

N

AN
Conjugate series and complex methods in fhe-
theory of Fourier series. Y

7Ny
& L

7.4. Summability of confugate é’é'i"i‘éélt)‘alilgﬂgﬁll%%ﬁm
we proved some resulis on the summability G of Fourier
series. As regards the conjugate series our | results wers less
complete. The obstacle was that we kne\i{\ﬁothing azbout the
exisience of the integral )

AN

1 — 1 fxrt—flx—b) 2t —Lien (_ 1 [f(x+t)+f(x—t)dt)_
i

i g it R\ A

2tg it

We proved that, almost evel;ywhere, the existence of (1) was
equivalent to the summabilitg ¥ of S [f]. We now intend to prove
the latter fact using cgfplex methods, independently of the be-
haviour of (1). This Wil just enable us to prove the existence
of (1} for almost eybry x. The proof will be based on the fol-
lowing lemma. ;"

T

A%/
Let G (g)};"ao toaztow, 2., Z2=reE, bea furzf:t_zorz which
is regu!ﬂf}\:bB&}zded, and non-vanishing in the circle |z|<<1. The

fanction L = lim G (re™*) may vanish only in a set of measure (.
WA -l

l ‘Sippose that "G (2) <1. That {(x) exists for almost every x
ollpws from the fact that the real and imaginary parts of
%o e¥ 4 . gre Fourier series of beunded functions (§ 4.86). Let
us take any branch of the function log G(z) = log |G (re*}| +
+iarg G(re™). Since G (2)% 0 for {z|<1, log G(2) is regular

Y Privaleoff {2}, Plessner (2, Hardy and Littlewcod [

Zygmund [2
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and log |G (re®): < 0. 1t follows that the harmeniz fonction
fog | G (re™)] is a Poisson-Stielijes iniegral (§ 4.36), and so tends,
for almost every x, to a finite limit as » 1. This shows that
L(x) =0 for almost every x, and the lemma is estahlished.

For any integrable f(x), S[f] is summable /4 olmost every-
where, It is sufficient to suppose that f = 0. Let 7(r, x) be the
Poisson integral for f(x), and f{r,X) the conjugate harmonic-
fonetion. The valnes of the function F(2) =f{r. x)+ if (., %%
z=re’, belong to the right half-plane, so thai the tuntting
G (2} = L/(F (z) + 1) is regular and less than 1 in absolui®value
for | z|<1. Hence, by the lemma, 11m G (re”*) exists and i8 different

from 0 for almost every x. Theuce we deduce i‘rzan for almost
every X, lim F (re’*), and therefore lim f(r, x), exisi# znd is finite.

As \33{31Lﬁarlgslmﬁﬂb§@1ﬁhe following propositions.

(i} For any integrable f the mtegml {l}exzats almost every-
where,

(i) E[f) is summable (C, r}, r>0 at almost every point, t0
the vailne (1) (§ 3.32),

The integral (1} wiil be denoted troughcout by F(x). The func-
tion f{x) is called the co:z_;;zgmfe function of f(x). Considering
the points where ={f} afds €[f] are both summable {C, 1), we
obtain the following p::bp})s:tlon {§ 3.14)

(iil) Given any\ﬁéegrable f(x), the conjugate harmonic fuic-
tion f(r,x), fends, for aimost every x,, to the value f(x,). as ihe
point (r, x) appedathes (1, x,) along any path not touching the circle.

I R Nx), Ol x 2, is a function of bounded variation, S [dF) is, at
almost ev«& -+ point, summabie (£, 0, r=0, to the value

O -

oS ) LR P =020 8 4yt { 'f,({ffﬁif_'(f::fl.—_”_(i)}da

N = 48in*Y ¢ fxan ™ 4 sin? ¢
\¥
The proof ruas on the same lines as in the case when F is absclutely
contipuous. Supposing, a3 we may, that Fix) is pen-decreasing, let f(7, =0
be the Poisson-Stjelijes integral for 4F, and F{r, x} the conjugate harmoni¢
function. Since f{,x)>> 0, we prove, as before, that hm Flr,x) exists agd 18

Iinite for almost every x. Combining the arguments of §6 3.45, 3.8, it can
eagily be sbown (the details of the proof we leave to the seader) that, at ady
point where F'(x) exists and is finite, & |4F] is summable A if aod only it

the integral (1) exists. An appeal to the second part of Theorem 3.8 comple-
tes the prool.
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it F' is ahsolutely continuous and F =}, an integration by parts shows
the integrals (1) and 7.1(1} to be equal.

7.2. Conlogate serles and Fourler series. We sghall
now be concerned with the very important problem of conditions
under whick tre conjugale series is itself a Fourier series. A special
result was established in § 4.22, but the method used there ecannot
be extended to more general cases. The following important result,
is due to M. Rieaz.

2L If felr, p>>1, then fe L7 and there exists a carstant
A, depending only on p and such that I|f; 0, 2] < A, ’Ib.,,ff, 9, 2x].
Moreover, S {f] =S [F]) §

In virtue of Theorem 4.86 (iii}, and of Fataus lemma, the
theorem which we have to prove is a cowm%uqﬁa}%;m gen-
lity equivalent to, the following proposition. \}

Let Fz)=u{z)+iv(z), ©v(0)=0,,8€ran arbitrary function
regular (nside the unit circle, Then N '\

A

(Iy DM fo(re®)) < Ap Wplu (re“}], Lr<1, p>1.

It is sufficient to provq.the truth of {1) in the case when
R f(z) = uz) > 0 for {z| <A Vn fact, having fixed r, let g, (x)=
= Max {4 {r, x), 0}, p,{x) = Min {u {r, x), 0}, so that 4 (re”) = o (x) +
+ o(x) = 2 (x}, say. "Ijhg}functions 2., 9, Are continuous and pos-
sess first derivatives, which are continuous, except at a finite
number of points*where they have simple discontinunities, It fol-
lows that the > (#onjugate functions 9 (x), ¢.(%), p(x) are also
continunus.  Let ¢ (5, ), oAp, X), #i(5 X), j=1,2, denote the cor-
respondmg,harmomc functions. Since g4s, x) > 0, we have, assum-
ing theNruth of (1) for u>> 0, that M pp, xN]< A, Walei (s, %31,
andaShaking p- 1, Mple ()] <0 4, Mo (x)) < 4, Mp[9 (x)]. By
Minkowski’s inequality we obtain: ‘\Jk,[w €9} <‘9‘tp[q>;(x)]+ Mplep, ()<

CXUSA ML (0], This is just (1) with the constant twice as large,

whlch is, of eourse, immaterial.

Passing to the proof of the theorem, let us consider the
branch of the fumetion Fr(z) which s positive at the origin.
Wriling «#, v instead of #(re®), w©{re’*), we have, by Canchy’s
theorem,

) M. Riesz [4].
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_ o E
s izi=r F 4 253 ‘1 2

The difference (4-- i) — (v} is equal to the inlegral of the
function pzr—%, which is regular in the right baif-plane, {aken
along the straight line beiwéen fv and u# /v, and so iis mo-
dulus does not exceed the length a of the path of integration,
wultiptied by the maximal modulus of the function integrated,
viz. p (@4 2yhe—l o pPiks~ (gp~t +op—1), Using this zogathe
fact that the last term in (2) is equal to Wz} <2 ¥fu].(8415),
we obtain from (2} the inequality . N

~

22 7 < 23-
Vldp—11 o
{3) ',-21:[{;‘1!);? dx. < ;p.z,?.P, o { (w4 uiv i"’_])d?ﬁ{i"‘éi" f af dx.
o = H 9 i

. i o an
VR 3 exp (£ 7 ip), where tha'sign in the expo-
neat is that of v; it follows that % (tv)r£lw rcostpr. Let / de-
note the integral! on the left of (3) CThen the ineguality will
hold & fortiori it we replace 7| by | MUy and so, applying Holder’s
inequality to the product u|ulssl we obtain the inequality
leos + p7 My [o] <L p 2900 (WEudh + Mp{u) WG o]} + Mj[al. Der
poting the ratio D{ol W] b X, we see that

{4) 'eas %pilép{pzxk(p—n (XP—l -1} + 1.

{t follows that, if onl 'ic't;s ipz 0, X cannot exceed a constant Ap
and thus the thegrem is established for p==3,5,7, ..

it would gbt*be difficult to supply a special proof for these
exceptional vialuas, but it is more convenient to use anothen
more illuminating, argument, which will give us, besides, inform-
ation zﬂ{Qut’ the constants A,

WTR2. [f the inequality 1.2Y(1) is true for a certain p> 1, #
mtls’*s{ZSO true for the complementary exponent p'; moreover Ap= Ag-

) Let g(x) be any trigonometrical polynomial with Mfgf <l

and g(x) the conjugate polynomial. From Parseval's relation
we have

[ vg (x)y dx = — f ag (x) dx.

It is not difficutt to see that M,jv] is the upper bound of
the expression on the left for all possible g (§ 4.7.2). The expres
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sion on the right does not exceed, in absclute valne, T, [u] pI S g
< Mpefu) Ay M o] =0 Ap Mip[u], so that Moo} << Ap Mp{u) and the
theorem follows. Af the same time, since Thecrem 7.21 was
established for 1 <p 2, it holds for P> 2 and in particular
for p =3, 5, .

7.23. Stein’s proof. The preceding proof of Theorem 72f
is due to M. Riesz. An alternative proof, based on a different idea,
has been obtained by Stein ). We shall reproduoce it heresince
it Is very simple and yields a good estimate for the constants A,

~n

Its main featare jg the nse of Green’s formula “': N
-
(1) d_?ds= /’[Awd&{ww,dbnat{ brary.org.in
dr i
AN

Here S is the circle 22 + <l 7 Cits circgzi;;f'f:rence. and @ a fune-
tion of rectangular variables £, %, whichintagether with its first and
second derivatives, is continucns in S;Nw/dr denotes the deriva:
tive in the direction of the radiu.s":vect()!‘, and dw the expres-
ston Rwidiz L Fajd v o3

As we already know, it™is sufficient to prove Theorem 7.21
for the case 1 <p <2 4> 0, Consider u(z), v{(2), | F(2)|=
= (2’ + vY)": gg functions (@£, 4. A simple calculation shows that

'\
@ dwsp (s Nywrr | Fry, 4\ Fp=pt| Fit P

80 that, sinpet p\/ 2, flzu we find 4 FIr<pt dur. Let
Melu (reixy] SXLR), WF (ret)] = u.(r). We shall apply the formula (1)
to the fum@ohs W=y’ and w=|Fr. Since ds=rdx, the lefi-
hand sig\e'} will represent rd\/dr and rdnjdr respectively, and,
in vicndg¥of the inequality 4| F P < p'd ur, we obtain p' (r) < p'3'(r).
Iﬂéegr}iting this inequality with respect to r, and taking into
fecgant that 1 (0) = p (0), p'>1, we find v (r) < p'h(r). This is
just the inequality 7.21(1), with Ap=p"ir, 1<p 2. If u is no long-
er positive, the value of Ap is increased by the faetor 2. It
follows that Ap < 2% < 2p for p> 2. For belter estimaies we
Tefer the reader to the original paper.

Y Stein [1].
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7.24, Theorem 7.21 ceases to be true when p = 1, since the
sum f(x) of €[f] is not necessarily integrable (§ 5.221). It fol-
jows, in particulsr, that the proper, i. e. the besi possible, value
of A, is unbounded when p tends to 1 or to o=. The place of
Theorem 7.21 is taken by two other theorems. We shall prove
the first of them by M. Riesz’s method, whereas for the second

the method developed in the preceding section will be more con~
venient.

(@) If f(%) is integrable, so is | F(x)i?, for any (< p <AsMo-
reover there is a constant B, depending only on p and Such that
WMol ] < BIf], 0 < p<1Y),

() If |fllog*|f| is integrable, then | iy iptegrabie and

E1f1=S(f]. There exist two absolute constapits A and B such
thatrww dbraulibrary .org.n

a4 am x:\\:
M [171ax < Af £ togt }f0x + B.
b ] PN

As regards (i) it is, as before, enough to prove that, if
F(z) = u+ iv is regular for 23X 1, then M fv] < B, W, {ul. Supr
pose first that & > 0. Taking)the real parts in 7.21{2), we have,
since |arg (1 + i0)? | < 4 pF,

cos & :;;\ 1 f ’
T oyt dx <L ( i dx) .
4&2_‘: J (2 427 <\2ms

This ineddality holds i fortiori if we omit the term &’ oR
the left, but\then we obtain just what we wanted to prove, with
BS = (2R)<®sec L xp. To remove the assumption u>0, we proceed
as in\ ‘21, but, since Minkowski’s inequality does not Wﬂrk_._f",r
P <1 we apply the inequality |l =g+ 517 < 10 P Hiwl”
(§\#:13) and the value of B, is increased by the factor 2'%.

)" To establish (ii) it is again sufficient to prove the inequality
(1) with £, f replaced by z,v. Suppose first ibat #>>e. We v&
rify that d(ulogu) = |FA&) e, 4|F' = |F | F) < 4(ulog®
Denoting by *(r) and p () the integrals of uzlogu and |F, OVer

% Kolmogoroff [ Littlewood [3, Hardy [0}, Tamarkin {1}
i % Zygmuovd ) Titchmarsh (8], Littlewond [4, Stein (b
log Tx denotes the function which is equal to log x for x>1 and o 0 elsewher®
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the interval 0 < x<2x we find that p/(r) < ¥ (), and hence
piry << (r), sinee |F (O} = a(0) <z log « ¢0).

In the general case we proceed as in § 7.21, viz. put p(x)=
— (%) +9al2+ (%), where g, = Max {p (x), e}, 9, = Min {# (x), —e),
o that [pfx)| e Since Afp,(0)] < Wlpo()} < Ulpnx)} e,
§ 415 the ipequality (1) foliows, with 4 =2, B = 2re. _ A

That ©{f} =&[f] is a corollary of the relation M [f — 5.]=B
which will be established in § 7.3 (5, denote the partial Sums
of S[f]} Y

7.23. Tt is important to observe that the integigaiiility of
|fIlog+ {f! is essential for that of f, and cannot bexreplaced by
anything i2se atringeni. This follows ﬁ%m;ﬂﬁmi@g{_&gw,
which is, in some respects, a converse of Theorem 7.24(ii).

If f is non-negative and f integrable, then ogt fis integrable ').

Suppose, as we may, that > 1, and Yet # (2), 7 (2) denote
the Poisson integral of f and the cpn?t%ate harmonic function.
Putting F{z) = &+ iv we consider th¢ integral of the function
#1F(z}log F (2), taken round theteifcle |z =r. Applying Cau-
thy's theorem and taking thetreal parts on both sides of the
squation, we have N

| 2ﬁ ;.“
1Y) -21: f {u log V1 4 v~ v avety 4:;—} dx=n{0)log u (D).
ivn 4 ‘..

In virtue of thénequality 0 varetg (v/u)<ix|o|, we obtain

2T N o
@ lf‘alogfw’xél-fl‘v.'dx+a(0)logu(0).
2R 4
In § 7.56\8eé also § 7.26(iii)) we shall learn that, if f is integrable,
then G/’ [7], so that the integral oa the right in (2) is bound-
ad‘ .ﬂ\nd'the result follows by an application of Fatou's lemma.

\: 1,28, Integral B. There exiat, as we bave already mentioned, functions
L7 such that f is not integrable. It Ia interesting to observe that, with a
sultable definition of an integral, more general than that of Lebesgue, the
fonetion £ s integrable. .

Given any function f{x), 2 <{ x <, we repeat it periodically in the in-
tervals ol ph o xca + k4 1k b=-+1,+2 ., where k=b—a. Let
d=x< & < ... < x, = b be any subdivision of {a,8), £, sn arbitrary point from
¥ %), and p= Max {£,— x; ). Consider the expression

/

e

") The theorem is dne to M. Riesz
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”
n !(e)=__21f(a,+:) = x ), 0<t<b—n,

and suppose that thers exists a number / with the following property: far
A0y £ >0 we can find g 8=3(:) such that [ F¢8) — 7| < ¢, except for ¢ belon-
ging to a get of meadure lesa than :, provided that p 72 (independeut]y of
the values of X, 8). We ghal gay, then, that f{x) is integrabla B aver {a, B}
and that f iz the value of the iotegral 1. It ig easy to grasp the meanigg ot
the above definition if we proceed gs follows: besides the function fi{x) Wwe
conslder a whols family of funetions Filx) = f(t+x), depending on w parsme-
ter f, and for aach of them we form Riemannian sums. I F{x) d8\aot inte-
grables R, no Jix} is, but it may happen that ‘on the whoje’ thpae”sums ap-

proach /. It thig bappens, f is integrable B; we ecould a;;é"s}ay that f is
integrable R ‘in messure’. >

) If f is integrable I oper (2,8, it Is miso infegmz!e'f!, both integrols

having the same e, re.in
P - —Iﬁtiilaﬁgl,agl\lfdoc§1'-respoudingly T{ty =1, {8) ¥-'7.{t), where f, s con-

tinuons and the integral of ify| over (a,b) is lesd Elan Ygef(b—a). The in-
togral of |Z(8)| over (a,) is less than '/;e%.30 that the set T of ¢ where
|28 | > ¢ is of meagure <& df /4, 4, aredbe/intearals of fifi Fr over (g, B),
then |7()— 1| <y, O —4|+1 )|+ £ \The ftirst term on the right is
lecs tham 1, < #f oply pB=30). The sBeond is less thag Yye for te T. The
third is less than 1, e {b_—a)(‘i,e,'assu’ming, 48 We may, that :(h—a) <71
Henes it —Ti<cetorte T.Ir <:e,;i'f only 5«3, and the theorem follows.
i) For every fef, Fis integrable B oper (0, 2n), and € [f] = 2 (/] 2.

Substituting f tor f in/Ahe éxpression (1), we obtwin a fumction 7(!),
conjugate to /(). By Theorem 7.24(1), we have W, [7 (9] < B, M@l
<268, M. It fono’«{\{ﬁat Wi < ye, for t e T, | Ty <5, if onfy the in-
tegral of | f| aver (0)27) 1s less thar v= (), In the general case we put
f=F#~f, where Fyyls. a trigonometrical polyngmial and the iategral of | fi|
Is lees thaw . WelHnd then that 17ty <ls for te T, 71« ¢, provided that
P8 =1 (e), ;I'l@lﬁ'the integral B of ¥ gver (6, 2r) exists and has the valus 0.

We shalllnow 8how that the products 7 egs kx, fainkx are integrable B
over (0,?\1;..{’0 the wvalyes by T, E=192  We may suppose that
=4 = . N= 8y =p =, = br=0. Wea have then

{2a)0 cos 5 = Feos kx, {2h) feiakx = Fain hx.

s _)This iy sasy to verify when f is a trigonometrical polynomial. Hence (2)

) Ietegral 8 is one of several definition
Denjoy; see Den foy [3], Boks [11.

to Denjoy, but the proof of the text,
by Saka,

s of an integral propounded by
Proposition (i) (ses below) belongs also
which is much simpler, has been given

The example of the series conjugate to 5.12(2)
netion equal to 1/x tog (x/2=} in the interval

0<x <) shows that 5 fanction may be integrable B over {— =) without

being integrable B over {0, =),
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in true if we replace f, f by Sy G, Where 3, ‘s, denote the (C,1) means of & 71,
B! respectively. It n v, then ?ﬂ cos kx - feos kx and, to prove {(2a), it ja
from the relations 9 fic, —7) cos kx) < By Mz, —F1>0 (§ 4.2). Similarly
we prove (2by. The farmulae (2) abow that the prodmefs feos £x and Feinfx

are intégrable 5 over {0, 2}, the valae of the integrals being 0. This com-
plates the proof of (if). ‘As a cnmllary wea obtain the following theorem.

(i) If 7 is integrable L, then © [f] is tre Fourier-Lebesgue series of 7 }

7.3. Mean convergence of Fourier series?. Thed t?zso-
rems on conjugate functions which we proved in the precedmg
paragraph enable us to obtain some results for the parttal sums

S, 8n 0f T[f], o Lf] WW W dbraullbl ary.org.in
) I Felr, p=1, then M[f — 5a) ~ 0.
(ty If f is integrable, then W,[f — 52 -0, W If — ;] ~ 0 jor
every (< p <1, .\ 2o 2
(iiiy If  fllogt '[! is integrable, t!xs{fz WL f~Sa] > 0, W [F—5,]-0.
Let s, Sn -denote the modified partlal sums s, S» (§ 2.3).

Bince s, — s, and 5, — s, Jtend uulformly to 0, it is sufficient to
prove the theorems for Srz, s,, mstead of S, $p. From the formula

si(x) = f e H 2= zi ,
% J* o
replacing sin a2 by, E;\n r (t + x)cos nx — cos # (¢ -+ x) sin nx, we
see that |su(x) | sADg(x) | 4 | g(x) |, where g, is conjugate to

f(x}sin nx, g, 39<f (x) cos nx. Theorem 7.21 and Minkowski's
Inequallty gl\?@\“
2 . i
AN M [8n] << 24, ML £,

i .‘\. i t t .
an Inegiality important in itself. Now put f=f'4f", where fis
a trlf:Onome-trlcal pﬂlynomlal and MW [fu} <: Simiarly we have
&38 +Sm f—‘Sn--(f -—Sn)-l-(f”—-é‘,.) and so, if p > 1,

WL 2 << M 1 14 ML+ Mk ] = D]+ ]

for # Yarge. By (1), the right-hand side does not exceed (24,41},
and the first part of the theorem follows.
If if|log™ ' f| is integrable, then

_1) See also Titchmareh [4), Smirnotf [1}
‘) Bee the papers referred to in the preceding paragraph.
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am

@) M s3] < 24 [ |f1log* || dx + 2B

(§ 7.24). Let us apply this result to the function kf, where &
is a positive constant. It follows that

Fixd
‘1"1[5;]{2Afif|log+!kf{dx+?§“:9, \
1] N
A

it 2B/&-= 1 ¢ and the integral of 2A { | log* | &f! over {1}, 27;)@569 not
exceed § 5. To obtain that M {f—s,] - 0, we again wriie f< ' +f,
where f' is a polynomial, and the integral of i £ fag* 4/ is
smajl, and proceed as before. R

From the formula defining s», we concludéthat |sx(x)—f ()<
g?’g{("kﬂll{la]“i‘? 1Y%, &nd g, having the avious meaning. Thus
I [sn] satisties an inequality analogoustaX2), with 24, 28 repla-
ced by 34, 8B, and again I [f— sJ¥d9.

Theorem (iil) is proved in the” same way, excepl that for
p <1 we nse the inequality MMARN "} < MEF]+ WG

As eoroliaries of the abowe theorems we obtain the following
results, the first of which~3a generalization of Theorem 4.41(i).

(iv) If the Fourier coefficients of a fanction fels, p>1,
are dn, by, those of :{ig‘e ¥ are a, b, we have the Parseval formula

s
N =
3) o [fgde=tad+ 3 (aah+bibn),
N T o =

the serﬁg{'}r’t’ the right being convergent

,®~ ' The formula (3) holds also if | f|leg™®|fi is integrable and
g bounded.

The proofs are similar to those of Theorems 4.41(ii) and

"4.41(iiD), if we take into account that M,[f — s,] -+ 0 in case (iV)

and M [f — s:} - 0 in case (v).

(viy For any infegrable { there Is a seguence of indices M
such that s, (x) converges almost everywhere to f(x); similarly we
can find a sequence {mi} suck that sm(x) tends almost everywhert
to f{x). This followe from (ii) and Theorem 4.2{ii).

We add that for {m} and {m:} we may take any sequences
increasing sufficiently rapidly and, consequently, {7} and {ma}
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may be subsequences of arbitrary sequences of integers tending
to -+ o,

7.31. Theorem 7.3(i) ceases to he true for p=1 or p=ox
M{f — 52] does not necessarily tend to 0 for f integrable, nor
does §, tend aniformly to f for J continnous. It js interesting
lo observe that if f and f are both integrable, or both continuous,
then €[/} and €[f] bebave much in the same way, as is seen<{
from the following theorems 1), N

A
(iy If f and f are both continuous, and & [f] converges-witt
formly, so does S(f). If fand f are both bounded and &[f] has
partial sums uniformly bounded, so has & i/l )
W) ¥ 2(f] is a Fourier series and s aaBnged.os9 i
Wlsal; and if M[f— 5,00, so does W =8 O
The proofs are based on the following twe Jemmas, the first
of which mey be considered as the limitin(ease, for p=eo, of
the second ?), O

(a) i tfx) is a trfgonamtricq{z ;:w{vrzomia! of order n, and
a1 M, then |#x)| < 20 MN
(O If Mlta(x)] < M. p = tthen My['(x)] < 2n M.

The proofs are very simple: In the formula

¥ ...\
talxy = i--uftn(x t@}fain u+2sin 21 + ... + nsin nu) du

we add to the exprES;!on in brackets the sum (n—1) sin (e 1) a2+
+ (1~ 2) sin (7 524 + ... + sin (22 — 1)z, which, since £, is 2 po-
lynomial of order’ s, does not change the value of the integral.
Adding tog{ﬁ%‘f the terms ksinke mnd ksin{2r— k)&, we obtain
the formyla™

am
1) .\~: » thfx) = —2-f to(x + u) sin nu K, (u)du,
N P

Rﬁm’denoting the Fejér kernel. It follows that ItL(x}f d_oes not
oxteed the (1 — 1)-st Fejér mean of the fanction 2jf.{x)], and it
Temaing tp appeal to Theorem 8.22 and the formula 4.33(3).

—_

) Fojer 16, Zygmund [8).

» The firat js due to S, Bernsteln [l]. For the second gee
Zygmunaq [9] and F. Riesz [3]. The factor 2 on the right may be made
to disappear, but this mzkes no difference to us.
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Let o, and s, denoie the first arithmetic means of &[f]
and €[f] Suppose that & { f] converges uniforrely. The formala
3.13(1) for the difference s, — o, now takes the form: o, —& =
= -.si,/'(rz-}-l): (sh— sp}itn 4+ 1} 4 spf(n+ 1), where n, is fixed and
go largs that |s=—S$,1<,, uniformly in x, for any nl=r, From
(a) we see that | sh —sp, 1< $sn. Sinece for # » n, > 1, we have
{shlf{n+1)<1s, it follows that [o,—s,|<e for ni>m, i
6, —5.~0. But, f being continuous, we have s~ f, and 80 3,\4}’,
uniformly in x. This gives the first part of (i). The, proef of
the second part is still simpler and may be left to the, redder.

We prove (i) by the same method, nsing (b\ for p = 1.

Considering, for example, the second part o (Jl) we ohserve
that M [, —s5,} < Y, = if n, is large enough apd)n > #,. Thence,
argping. darabbiforey WEEdBtain that TN {3, — S M shi(a + 1]~ 0.
This and the relation M [f— 5,0~ 0, give! \“l T — 5.~ 0, and the
theorem is established. \

We shail complete (i) by the ft}llowmg remark. The relation
5n — 85> 0 was established understhe sole hypothesis that 21
converges uniformly. We haye dhen £[f] = & (f], where f":L‘
and s0 9, converges almogt \everywhere. Therefore?), if <[f]
converges uniformly, E(f] Converges almost everywhere. If the
partials sums of & [f] ;»(e aniformly bounded, the pariial sums of
Z {f] are bounded iKaimast every point.

7.4, PriyAldti’s theorem. Theorem 72! teaches us that,
except in lioklidg cases, the functions f and f have, so to speek,
the same if{egrapility. It is therefore natural to ask if anything
similar {5 true for continuity. The answer is given by the fallow-
mg th’éxem due to Privaleff.

N SYf felipo, 0 <a <1, then feLipat.

Consider the formulae

Flo oo [flt DSy,
(1 =k 2ig Lt

&"\'
%
\:

Farm=-L17] [+t~ f (x4 h) d,
e Bl g~k

'y Fejér [6]: see also Privaioff (4}, Zygmuna [7].
B Privaloft {3
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where %2 >> 9, They differ slightly from 7.1(1), but, since tglt is
an odd function of £, the additional terms vanish. The integrands
are O (1%, OGf—aPY respectively. Consequently, if we
cut the interval {— 24 2%) out of the interval of integration
{(~a,7) in (1), we commit an error R =0(k in the first for-
mula and an error R, = Q%% in the second. Hence the difference
fx+ k) —F(x) is equal to \
g 4 THT ,\:\
@ -~/ +] U e 0 =7 (9 letg k¢ — ) — otg 3t

- e ah N

+R2“R1+R, “'(‘.},
where R=[f (x+ i) — £ ()] [ [otg § (¢ wHyedbggbliProvs pp.in
T

- - \
—0¢ [2 log SM@J 200,
sin 3 (£ + &) ¥
Since ectgL(t— ) — etg 4 ¢ = sig {H sin 1 (£ — A) sin } £, the
function under the integral sign\in (2} is O(¢%)- Ot [,
hence the integral itself is O(iz“).:;'Collecting the {erms, we find
that 7 (x + &) —flx) =0 unifermly in x, and the theorem is
established, N
The theorem fails fg\”a =0 and « = 1. The function eonjug-
ate to sin.x + Lsin 2« w=%(r—x), 0<x< 21, is not bounded.
Imegrating the last h&es formally, we obtain a function which
is Lip 1, and whdsa conjugate is not. Repeating the previous
Argument we findCthat, if fe Lip 1, then o (3 /)= 0@ log 1/8).

7.5. Pti;er series of bounded variation. We conclude
this Chﬂp{’“by a few theorems on Fourier series of functions
which,, :t:t)gether with their conjugate, are of bounded variation.
It willbe more convenient {o state these theorems in the form
@ihg On power series. We shall say that a power series

(1) @+ a,z+a,2°+ .. =F(z)

is of bounded variation, if its real and imaginary components,
?0" Z=¢", are both Fourier series of functions of bounded var-
lation. We know {§ 2.631) that F(e™) is then continuous; couse-
duently the series (1) converges uniformly for |2| =1, and hence
Convergeg uniformiy for |z| < 1. The theorems we aim al are
as follows,

N\
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(i) If the power series (1} Is of bounded variation, it converge.
absolutely on the vircle |2)=1",

(i} If the power series (1) is of bounded variation, the func
tion F (™) is absolutely continuous?).

We shall base the proofs on a number of lemmas which are
interesting and important in themselves. ~

7.51. A function F(z), regular for |z|<_1, is said toshelong
to the class H?, p >0, if the expression PR,

ule) = polr; F) = l f | Fere)p dxn S

is bou%!]egu?ﬂa;a?yloﬂg We shall write A msteas of H1, and p in-
stead o w. If p > 1, H? coincides with th® class of power series
whose real parts are Poisson’s integrals of functions belonging
to L. The real and imaginary parxg\of a function belonging o
H are represented by Polsson-St:eltIes integrala (§ 4.56.

In virtue of Theorems 2.13 and 4.36(ii), a necesgary and sat-
ficient condition that the serIes 7.5(1) should be of bounded var
iation is that the function®§ (z) = 2F'(2) = 4,2 + 2a,2° + ... should
belong to H. It is famlhar that 2zp (r; zF') represents the lengtt
of the curve w = ﬁ({% \Zi=r

The tirst Ie‘xqm’a we need is as follows.

[ C@EG2) Oxe) = 3, + a2 ..., and polr; O) <4
wo(r; Gy) <ol wwhere A, >0, A,; 0, the series \a1;+ia2;/2+1anliﬁ+--
ronverges\to € sum L4 A

\Eut Gulz) = a§ 4 a(”z dos G2 = [« 4 [ 2 + -
k‘*} 2, G'(2) = Gi(z) Gil2) = tlo+¢1 z+.. In virtue of Pa}seval

.'rel'aho'l we have p,(r; Gy = n.(r; (}k), and it iz easy to see tha
~'1ﬂ,. i <an,rz-0 1,.

 Moreover, by Schwarzs inequality, we hav
ol G) < pltr; G pi(r: Gy = pi(ry G,) wi(r; Gy) < A, 4.

Let us \f:x a value of r and consnier the absolutely converg
ent series o7 sin X + ayr?sin 2x 4 .. X {G'(re')).  Multiplyin
both sides of the equation by {L(r—x), integrating the resi

) Hardy and Littlewaod [10]
#» F.and M. Riesz [1l.
) Hardy [10.

. See also Fejér (9]
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over (0, 2w}, and taking into account that then n-th sine coeffi-
cient of § (7 — x) is 1/n, we obtain

n=1 M

P i 14
W I rmelisgeeyie—xac §f| G'(r o), dx.

The lest integral does not exceed A A,. Making 7+ 1, we
find that i { @ ... < 24, 4, and, since | %] < #a» the lemmae,
follows.

7.52, In virtue of this lemma, to prove Theorem 7.5(i) itould
be sufficient to show that the function G(2)=zF(ey=az+ 28,2 + ..
is a product of two functions Gy, G, of the class HZ :’Ff}js propo-
sition will he established later, but for QuF-aeipal INRERSE S e Jess
strong result will do. Bupposé namely that (G (2)/has only a finite
Bumber of zeros {, %, .0 in the circle |ZNKY. Put b4z} =2
I &= 07 If Lx 340, let bu(2)=(2—L0)/(1—230), BEY=b,(2) by(z)... ba(2).
Each function &4(2) is regular for |z] < ;.}as a simple zerc at
G and onty there, and |&x(z)i=1\Mob |2z/=11). Therefore
the function #(z) = G(2)/B(z) is regular for |z|<1, and, as 71,
lim p (r; Hy < Tim p (7 G). N '

Let A =1limp(r; G). The {furction H(z) has no zeros for
[2{ <1, and sg V H (2) is regiilar for |z| <1. Put G,(z) = Y H(2),
U2y = Y H(2) B (2), so that G, G, = G. It follows that pr; G| =
=t H], ol Gy b Hl, impir Gl <A asr-1, k=12
Now, as it is seen from Parseval's relation, j5,(r) increases with s,
80 that we have4iuts; Gr) < A for r < 1. An appeal to the lemma
of § 751 gives Ghe following result. [f zF'(z) has only a fin-
e number GF“zeros in (2] <1, and if Gmp(r2F) < A, then
1a i+ el < R A

Now ‘it ig easy to complete the proof of Theorem 7.5(i). Let
b now(denote the upper bound of p{r, zF) for 0 r<<1. (It
Jilkbe proved in § 7.53(i) that p (r) is & non-decreasing function
L7, so that B = A, but this result is not required here). If
0<lp< I, the functien p2F'(zp) has only a finite number of zeros

—_—

) This last fact, familiar to anyone acquainted withthe elomentsof ct_mxn_-iorm-
al TEPresentation, may be proved as follows: (byle™) | =¥ — Ll —* 4y | =
= | _ fle i ix _» i* ¢ |==1. It followa that jby(z) | <=1

i — L i=]e -_ et — §{, | =1. It followa |2
for | 2] < ; al =] x I x|
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for (21 <1, Thus |a,|p+idyp®+ ... < mp; making ¢~ 1, we find
that |a, |+ lay! + ... < 7p and the theorem foliows.

7.521. As a corollary of Theorems 7.5(1) and 7.24(ii} we obtaim:
If F(x) is absolutely continuous and |F'(xy|logt F'(x): ¢ L, then
€& (F} conuverges absolutely (§ 6.36).

7.53. Passing to the proof of Theorem 7.5}, we shall agsin\
regoire a few lemmas

(1) ¥ F(2) is regular for |z <1, plr, Fy is a nomd&qeasmg
Sfunction of r. It is not difficult to deduce this from the following
propositien which we shall prove first. 3

(i) If £.(2), D), ..., filZ) are regular ms:demd on the bound-
ary of & planGategion ,5 and 5 (2) =1 f(2) It L FD1e, P,
the FORCHOA fz canhol attain a proper maximim inside B.

Buppose, on the conirary, that ¢ (z}\ does attain such a ma-
xithum at a point z, interior to R. Lat C be a cirele |z — Zpi ¥
contained in R and such that (a) N fl2e) = 0, ti‘en Fulzy == (
in C,k=1,2,..n (b) at a point: zh“l z,— 2, =r, g (2) takes & va-
lue smaller than (2,0 Letodlz) be the sum of terms e JH(2)
extended over the values ‘of % for which fulz,) £ 0. The uamit
factors £, are so chosen<{ihat the fonction ¢ (z), which is regular
in C, takes the va[ue q(z\,} at the point z,. For every 2,12—2p <"
we have X\

1$(2)' < ‘f;(z)F‘”-}- AP =9 (2) Lo (2) = () = ¢ (2]

apd for z=g; We actualiy have o (2} <<¢(z,), i. e. 10 (z)| <% {(z,)|

This is Q\ontradlctlun with the principle of maximum 3nd (in)
is esta’h{lshed

Consider now the fanction g.(z)={'F{n; 2}|F+...+ 1F (N 2} 17}/

wlqere Ty, oy - » e AFe the a-th unit roots. It is obvious that, for

every 0 < r <1, pa(re™) - p{r; F) uniformly in x. Let 0<p<r<1

and let Max |p.2)' for [z| < 7 be altained at a poiat z=re®

We have them gu{pe’) < pa(re’), and, making 7 » oo, p{p) < plr)

(ili) Lef &y, Gy . be a seqaence of points such that 0<!{s1< 1,

and that the product |L,].|%\ ... converges. If 3,=1/C,, the product

s “'Ers 1
(l) [_Ii‘"\m |CHI

converges absolutely and uniformly in every circle |z! L r<1, 10
a function B (z) vanishing at the points L. and only there,
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The terms of (1) differ only by constant unit factors from
the expressions &,(z) considered in § 7.52. It 12i < r, the differ-
ence 1—(z — L)i(z — 2} = (5 — LYz ~ &) does not exceed
(1= 8 —n <2 — 1. 1/(1 —r) in absolute value; ard since,
by hypothesis, the series (1 — [£, )+ (1 — i)+ .. converges,
the product with factors (z — L)z — Q:) converges absolutely and,
uniformly for !z, <r. 8o does the product {(1). Since the terms
of (1) are less than 1 in absolute value, we obtain that 'B(z){ 51
for |[2! <1 and the lemma is established. o\

(v) IF 8, %, .. are all the zeros, different Jrom, ﬂ;g\'orfgm,
of a function F(z)e He, |z <1, each counted according Yo its malt-
iplicity, the product [§'- |, .. converges'). Let BR ?Bdenote the
n-th partial product of (1) multiplied by ¥*7 v SRLZP BTy 958 D
order &£ at the origin. The relation (s F)srp'as r -1 implies
bos FiBa) v, (n=1,2,..) and so, by (i), s F/Ba) < 1. Making
r=0we find {7, 8 .. 5 > ptF (2)i28( 5 and the lemma fol-
lows, X

V) I pdr F)lp, 05 r <A§Swe have F(2) = G (2) B (z),
where [B{z) <1, G(z) is regulor and different from 0, and
t{r; G) L B, N\

This lemma, which igfilndamental for the whole theory, now
follows immediately. If,fé)%ﬂ for |z <1, we may put B(z) =1,
Gy=F). It g, %o s By(z) bave the same meaning as in
(iv), we put B(2) =Nim B.(z). From the formula p,(r; F/By) < 1,
we deduce that, #r; G) < 1, where the function G = F/B has no
zero for "zi<\>Since 'B|<1, the lemma is established.

(Vi) I Ve H, then F=F,F, with F, and F, belonging to %,
It F= ,G\B\,\&rhere G and B have the same meaning as in {v), we
bt Frs’yG, F,=yGB. Since p(n F) <o 0), £=1,2, the
lemtna follows.

\/ 1.85. Now we are in a position to prove Theorem 7.5(if),
which we state in the following equivalent form. If the power

) Lemma (iv), as well as some other resuits of this section, is known
to be trus for s more goneral class of functions, viz. for functions "?511'3}1
that @ [log“"F(re’-“')] = ({1}, The latter claas, although very important in the
general theory of analytic functions, has less applications to the theory of
trigonometrieal serigs.

) F.Riesz [4].
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serles 1501} belongs to H, the real and imaginary parts of the series
on the anit circle are Fourier series. It is sufficieni to show that
M [F(re™y— F{pe)| >0 ag r,p~1 (§ 4.36). Using the last lemma
of the previous section and applying Schwarz’s inequality, we
easily obtain

Q"

M (Flre™) — F (pen)] < My Fi(re™)] M Fy(re’) — Fpe)] 4,
(NN
+ My [Fylpe')] Mp[Fi(re™) — Fi(pes)], O

Since the second factor in each term on the right:.ie:fdg to 0 a8
r, p— 1, the result follows. ~\

- a8 From, the olemmas estal:.olished i the preceding sec-
tions we shall deduce a number of mtet;es\h\rg consegquences.

) If F(z)eHe, then, for almost g-zié%; 2, = ef%e, Fletw)=lim F(2)
exists and is finite as z - z, along any\path not touching the circle’).
This theorem is only novel in théledse p<C1. With the notation
of § T54v) put F.(2)= (PUZYNF,(2) = B(2). F, and F, belong
to H: Since for each of,jthein our thegrem is true, it is also
tene for F= Fi7 F,, ~

(ii) The functiq}g*i?(e"") lP of (i) is infegrable. This is a con-
sequence of Fatou's Nemma.

(i) If F(2ye Hr, then W,[F(retxy — Fe#)] >0 as 1%
This theorem s known to us for p>1 (§ 4.36). Let p <1,
0<r<p N It F, and F, have the same mesning as in (i),
then, applying the first inequality of 4.13(3), we obtain

O
SNV TF (e} — Fpe) 1 < | Fi{pety |2 | Fyfret*y — Fype) FF +

O +1Exlre) P | FiP(re) — FiP(pey .

Making p » 1 and integrating over (0, 27), we find

'y F.Riesz [4]. The theorem is false for harmonic functions: there
is a harmonic function u{z), |z|<1, such that pp(r;u)=0(1) {or every
0<p <1, while lin':u(re"') exists only in a sel of measure 0. See Hard¥

r+
and Littlewood [12].
" F. Riesz [4].
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bid i
f_! Fre®™y— F(eMylrdx < f | Fi(e™) B[ Fy(ret) — Fy(ey i dx +

o

+ [ | Fore®y | Fi¥(reix) — FiP(einy)o dx.
&

The first integral on the right tends to 0 with 1 — r gince.
the product ' Fi(e}|?| F(re'*) — Fy(e’}|7 is less than the intepr-
able function 27 Fi(¢"}? and tends to 0 almost everywhere. Let
Fi"(2) = L{z); L (z) ¢ H". Sines | F,| < 1, the second integral does
not cxceed

o
L.

g om ) "\ : )
(1) [f [ L(re)y — L (e%) ;:paxJ h [ fl . (Fé,%db@‘,;iﬁ,m}g}.g, in

The first factor here tends to 0 if42p”> 1, the second is
bounded, and the result follows for p&%/, Assuming this, we
obtain, from (1), the result for p>- 1{‘4,taﬁd 80 On.

(tv) If F(2)e H* and |F(e®)® is integrable for B> a, then
F(z2) e H'1). The theorem is pﬁﬁbus it e>1. It is also simple
it F(2) 5% 0 for !z{<1; for ¥#\( () = F¥*(z), then G (2} ¢ H? and
G(e*) e LF* g0 that G (2)¢ 7™ F(2) ¢ HP,

In the general edse we have F =GB, where G{z) £ 0,
GeH* and the fo ct"fon’B is a produet 6f certain rational fune-
tions (§ 7.54(v)). .%ce |B(z}{<{1, the function B (¢*) exists for
almost every xdnd | B (¢)< 1. We shall show that | B (%) | =1
for almost ali™x: Taking this result for granted, we can easily
prove our“t\ﬁ}(irem. For it F(e®yelB, [B(e®)!=1, then G(e™)elP
and, singe’ G (z) € H*, G (2) =0, we obtain that G(z)e #8, in
virtug(ot the case already dealt with. Since F(z) =B (z) H (2),
F(2} HP and the theorem is established.

“\» Using Theorem 7.24(i), we obtain, as a corollary, the follow-
\iflg proposition.

(v} If the function F conjugate fo an integrable function fis
integrable, then &(f] = &[f].

We have still to prove that { B(e")|=1 for almost every x,
We may obviously assume that the number of zeros &,, &,, ... is infin-

—_—

Y Smirnotf (1),
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ite and that F(0)£0. Since [B) <1, it is sufficient to show
that p.(#;8) 1 as #-1. Now RO B = 13 G, and, since
wi{r} is a non-decreasing funciion of r, lim BB 2 0008,
Let By denote the N-th partial preduct of 7.53(1) and Ry the pro-
duct of the remaining terms, so that B=ByRy. Then we have
lin;] 2R = g | Sargs i &nd, singe | Bi(2) | tends unifarmly't\o
[

1 a8 |z{+1, we obtasin that lim o (r; B) » g 1 ' Taking'
arbitrarily large, we see that lim pinB) =1, i e lm mirEN= 1.
NS ©

7.6, Miseellanesus theorems and examples.

P !

Le=] \ 3
— 10— (e—s

l. The formula 7.1{1) may be written f(x) = ~—l<(+t)f—()'——) a4t

{§ 2.9.8). ) ) )
braulibrary.org.in _

2}"%}:}%9& 1Js‘c an jnte rablegf(x) such that f(x) isQnon-integrabIe in avery
interval, Lusin [1], o\

[Take =1 sueh that f log £ ia nowhequdtegrable, and epriy Theo-
rems 7.25, 2.531%. X )

3. {0y If [f{x}| <1, then exXp b f| ig ihjtéérable Tor every A<, {i} If
f 14 continuons, exp Aif| s integrablf{‘}'oi: every L (iif) If 5, 5, denote the
partial suma of &7, Em respegtjvhl_&,;, then MW [exp }.if-—sn iy &, 2mf-» 2n,
N {exp & l}_-—;,,!]—ﬂt, for L=z, §~if,ij'i' < 1, and for any » if ¥ ia continuous.
Zygmund [4]: see algo Warsehawskij [i1.

[To prove (i} let F, a,{‘ have the sama meaning as in § 7.2{, Then

-
(N o
1 N A\ :
o ‘[Z_I exp {i“"F{Z‘)%Z = exp {+ aF O}, fcos At exp (4 o) di — const.].
m L, O g
41 F{Z}F?‘(i)+i'” (z) 18 an arbitrary function regular for rz{=21
and such that 4320, ©>> 0, then u () ¢ y2—, (™) € L2~ for every = > 0 but
not necessatily(for « = ¢, '
{Let\eh= Fexp {— mij4} =i iy, where Vo <oy, Apply to F, an ar-
gument.‘ai'hi ar to that of Theorem 7.240].

BVt @.¥ ana D, ¥, be two pairs of Young's complementary fune-
t,igmi.\. It, for any fel’, (i) the eonjugate funetion F belongs to Ly, and
1

h
X{i) ‘there exiats constant 4 independent of J and guch that ,I|'J7i,ffJFJ «-gﬁﬂifil(‘b,
— 13
then, for any gel,.;;fl, we have Lely und, moreover, Hgf.'gr,-é 24 |'.!gr”5ff,'
[t i sufficient to prove that, it ,'|’1:f|,'¢, << A ||u|'|¢) for any function
- - 1
4~+fv regular for [z{<1 and szcl that u(0) =0, then o lly < 24 el
Denoting by # an arbitrary polynomiat spepn that B b h |, 0,27 <71, we have

o in

II‘UIIw:Sgpr!vkdxf=82pjl!u}?dx rf.gg,qa”a”wl,
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where = = Max{1,8up M [P, /24 ]} (§ 4.541). On the other hapd, since
M[P k] =71, we have Phigps2 and so, by (i), g ALk p i2A.
Heace (§ 4.541) W [, ' 4124 ] <1, o =1, avd [0l <24 u )y

6. Let £{x), x2»0, be a function which is concave (i. e. J—S is convex),
non-negative, has a econtinuous derivative for x> 6, and tends to e with x,
and et 5(x) be the indelinite integral of s{x). Let R(x}, x>0, be a funstion
which is oon-negative, convex, tends to = == with x, and has the firet and second
derivatives continmouns for x> 0. Suppose in addition that there is a com-,
stant C2=0 gueh that S"(x) 4 $xjc < CR"(x)., Usnder these conditions,Jf
felp, then fe Le ’.‘\

[The prool is substantially the same as that of § 723 Obsgrfe\that
320 £ 0500 >0 with € independent of x. I 8 (x}<l R{x), then\we have
WIS f1< C.A[R f]}, where C is independent of f]. N\

o s QogT )% L, a0, then 7] log® ™ 2+ |F)yeb, and there
are iwo coustants A= 4, B=8_such that ww\,\.r_d{bra”v:v‘igrary.org.111

Fid a

J e @+ 1 Mhax <A f 17 dogt 1D +-5.
o ] ¢

(it} If the integral of exp’f ™ a0, over‘(q\.ﬁ] is <1, then the fune-
tion expa 7|P ig integrable for &= a/(z 4 1} and & <k, = hy{a).

(iii) Theorem (i) is not true for =9, .

8. Let 3 and a, dencte tha k-ﬂ}'fat:i'ihmetic means, £ >0, for E{dF]
and & [4F) respectively, where F is’ﬂ‘.’fmﬁ',ﬁon of bounded variation. if f= F',
and £ denctes the function defized by 7.11(1), then Wyls,—Fl= 0, M ls,— gl =0
for every 0. p<71. L

% The constant AP of":lkhaorem 7.21 satisfien an inequality AP>AP,
Wwhers A 18 a posilive abgolute’ constant, Titehmarsh [5].
_ [Consider the fug(%sm f(xX)=i(=—x)/2, 0« x < 2=, and cbserve that
Fixy ~tog 1/x as x— 400 .

16, Let P (g) &l 4 2428 ... 25 (n+ D= (1422 F 32 22N+ 1),
Onl2) =1+ 22 824 . (041 2+ 1) 1 Elay! <om, myt2n, <y,
k=13, ., the\eul and imagicary parts of the power series Yo, 2™k P,,*(z),
z=¢, ag vurier series. If in addition o, log #, -» = the partial sums ¢, of
the DO)&?B}; saries galisfy the relation lim 3¢ [fv(e"x)] ==, The eXample is due
to Y ”Riesz; see Zygmund [9].
\ J (The point of this example jis that the phenomenon observed in § 5.12
foFourier series subsists for power serigs. Use the relations M [/,(e™)] = 2=,
W {Q ey = Clog n, where € >0 is an absolute conatant].

1L Let F(zj=u(d}Liv(z) be a function reguiar for |z:< 1. If, for
4ty point x e £,| E 1 o, lim#(z) exists and is finite 28 z-¢™ giong any
path not teuching the cirele, the same is true for the function v(2) and al
mogt every point xpe£ Privalolf [2]; see also Plessner [3).

For the proof, which is rather deep, the reader is referred to the origi-
hal papers.
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12, 1t F(x) is integrable and F'(x} exists and is Hsite for xc E,1 E,2>0,

fF(x+t}—§—F(x~t)-2F{x)
4sint !

the integral {*} — dt exisis for almost every

xef. Plessnaer [3].

[This tollows from the previous theorem and Theorem 3213

18. If the conditions of the previows theorem are zaiiefied, thea, for
elmost every x e E, T[F] s summable (C, £, £>>1, to the vslue ). N\

14. If f{x).is integrable in the sense of Denjoy-Perron; the fuqctmn
f(x) defined by 7.1(1) exists for slmost every x. Plessner {3} '\..\

15. I either () 0<Ca<Cl, p>1, or (i) a==1, p> 1, and €} elonga
to Lip (&, p), s0 does f. The theorem is false for u=1, p= 1,“Hard5" and
Littlewood [13). x\

[Using Minkowski's inequality 4.23(4), the proof of (i ‘% Jeimilar to that
of Theorem 7.4; (1) i equivalent to Thecrem 7.21 (§ 47‘@:}'

www dbraulibrary.org.in N
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CHAPTER VIIL N\

: N
O\

Divergence of Fourler series. Gibbs's phenonienon.

8.1. Continuous funections Wl%wﬂgﬁfgﬁfﬂa‘{?_‘wglﬁl‘
series, In Chapter II we proved several conditigns’ensuring the
convergence of Fourier series. Now we willkinwestigate in what
degree those tests represent the best possible resuits. It will
appear that, although some improvements‘@re still possible, the
problem of the convergence of Fourien’sh'ies at individual points
hag reached a stage where we cad bardly hope for easentially
New positive results, if we onlynuse the classical devices of
Chapter I, Sach tests as Dipi’a " or Dini-Lipschitz’s represent
2 limit beyond which we eu‘m'u‘riter actual divergence of Fourier
Series, N

The first negative.‘..ﬁa‘sult in the convergence of Fourier ser-
ies is due to P. Du ;&Q’istReymond {1876y who proved that

There exist continuous functions with Fourier series diverging
ot a point vy, ;"

Since thiat several other examples have been found, and we
intend to (rdproduce two of them. The first is due do Fejér ?
and is.'r'hnarkable for its elegance and simplicity. The second
methgdh (§ 8.31), propounded by Lebesgue, lies more at the roots
nf\:iﬁe matter and can be used in many similar probiems.

8.11. Fejlér’s example. It is based on the use of the tri-
gonometrical polynomial

) P.DuBois Reymornd {1].
N Fejér (7],
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cospx  cosfptd)x coslp-hr—ijx

“ n r—1 ’ 1
" _es@ebnar  cos@aon
: T

Let us denote it by Q(x,w,#), and let Q (x, . 7} be the con-
jugate polynomial. Adding up the terms with the same denomis
nator we find that

"ol 2 \\
Q (%, py 1) =sin (p+ 1) x 3 sk, N\
= kR >
Qx,pmy=—cos(p+nx ¥ g‘-r—lﬁ,{tf
F==1 }E\\
Bince.Ahel pentidlr oy $iMhe series sin x +2A8in 2x - .. are less

than a constant C jan absolute value (§ 3.23@1), § 5.11), we have
Q| < C Q| <€ C, for every x,p, 1 an the other hand, for
% =0, the sum of the first # terms Wi\ Q (x, p, 1), which is equal
to i/n+1/(n — 1)+ .. + 1> log n,isMarge with .

Let {n:}, {2} be sets of igftjegers which we shall define in
& moment, and let o, >0, «, A8 ... < ow. The series

~ ) 3

@ & glakQ(x&,é;), b kzj’lakéix, 78}

converge uniform) 4:0" continnous sums which we denote by f(%)
gi{x) resnectivelyf\‘f Pr 4 2 <vapr (R=1,2,.), then Q(x, %o
and Q(x, w,‘n\})’.ﬁo not overlap for k== 4 Similarly Q{x, pa %
and Q(-’C{&éﬂﬂ. Therefore, writing every Q and Q in (2) in ex-
tenso, we Tepresent (2) in the form of trigonometrical series

\ g o o .
B 8) 1a,+3 (o, cos e+ b, sinvx), b) 3(a, sinvx — b, cos W)
o N v=1

N\ w=1
oy

3\ iA}:tually the first of them contains only cosines, the second only

i Denoti i ; . Enl%)
sines. Denoting the pariial sums of these series by Si(xh %)
we see that 5, _,(x) and t}lk_l(x) converge uniformly, so that (3a)
is & [f] and (3b) is & {g}. Since ,|Sp-k+rt,,(0) — sl—‘-k_k(o) l e ¥ l(]g Ay

the series (3a) will certainly be divergent at x = (0 if ux l0g %%
does not tend to 0. Thus

If op = R% pu = me =< 2%, the continuous function f def ined by
(22) has a divergent Fourier series.
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It is not difficult to see that both series (3) converge uni-
formiy for & <|x'< = whatever 8> 0. This tollows from the
fact that the partial sums of Q (x, . #) and Q (X, we, 12) are
bounded for § <8 < ‘x| < =, uniformly in X, p, #: (§ 1.22). Sin-
ce the series (3b), containing only sines, converges for x = (, it
converges everywhere.

Q"
BIA2, Ff =L pe=np = 2%, the continuous Junction g de
fined by BAI(2Y) has a - Fourier series which is convergent gy?gy—
Where, but not uniformly 1), e\

_In fact, if x==/n and p.=»n, the sum of the fi,rs}‘.;z_' terms
of Q(x, p, ) exceeds (14 1/24 ... 4 /1) sin (=/4) > (log/y' 2. The-
refore £, .. (x) — L1 (%) 2 ai(log 7x)f) B dbmmhiterarya antis

completes the proof. We add a Few remarks, \

813, (1) I we put o = 1/2% pp = 225078.11(2), the partial
Sums s.{x), f,{x)} are uniformly boundéd) (|5, <A, 4. <<A) in
(—=.7), but {s.{0)} oscillates finitely, aad {fz(x)}, which converges
8verywhere, does not converge uftiférmly in the neighbourheod
of x =1, o Y.

()  There exists a power* series ¢, +c,z+ .. regular jor
|2 <1, continuous Jor AN Y, and divergent af z =1. For
€lgl = € [f], and so thg"power series ¢, + ¢, 2 +... which reduces
to E{f1+LiZ{f] tor Z<2* is an instance in point %),

(i) There eis¥ continuous functions F(x) and G(x) such
that S [F| divepgés’ at an everywhere dense set of points, and Z [G]
Converges cuebyibhere, but in no interval aniformly ),

paLe

Let Q(x), £1{x) be the functions considered in (i), and let
i F, ’ay}}. be a set £ of points everywhere dense in (0, 2x), >0,
fhAaY L < ool We put F(x)=c f(x—r)+f{x—r)+.,
G’f{:}": 2E& X —7)d 5 glx—r)+..., and denote by Fi(x), Gilx)
the” %-th; partial sums of these series. Let F{x) = Falx) + Rul(x),
G x) = Gofx) - R(x). The series defining F(x) converges uni-
formly and we obtain a partial sum of S [F] by adding the eor-

'} The first example of this singularity is due to Lebesgue,
Y Fejsr (7]
. *} For the first part of the theorem ses P. Du Beia Reymond [!],
Fejér 7], for the second Steinhaus |6].
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responding partial sums of Slef(x — )} for i=1, % ... Suppose
that n>>0 is given. The partial sums of E{R] and 2 [Ri] are
all less than A (sapi + see2 +...) <% in absolute velue (see (i),
provided that k=& (1} is large enough. Since S[Fl=Z[FA}+ (R,
E(0l=CGl+ & jR:), we conclude that (1) Z [F] diverges at any
of the points 7;, 1 < i<k, where the oscillation of the partial
sums of & [s; f{x — r)} exceeds v, (2) if x € E, the oscillation gt
the partial sums of Z[F] at x is <{7, (3) the oscillation ot:.@{(?l
is less than 7 at every £ Slnce % and 1/& may be apbitvarly
small, we obtain from (1) and (2) that & [F) diverges for\ ¥ £ and
converges for x<¢ £. From (3) we deduce that I [(i, Gonverges
everywhere and it remains only to show that thg\'miwergence is
non-tniform in the qeigjhb?]urhood of every ra. NOw, since E[f(x—r)
con‘efé')‘k'egb‘ifblﬁl-lflrnail rnly in the neighbourhded” of r, #0 does
Sleng (x — )+ R} = Sler g (x—ra)} + S [Re A8 & > /e is large enough.
We have G = |Gy —en g {x ~ 70} + (sn ¥ — 72) -+ Ri] and, sioce
&[Gy — en & (x —r1)} converges uniforfly in a neighbourhood of /s
the convergence of H1U] cannot ];g«hniform there, and this com-
pletes the proof. ™N

8.14. In the preceding-§getion we proved more than we set
out to prove since we sfiowed that, for any enumerable set E,
there exists a contiqqm}s f, such that &[f] diverges in E and
converges outside B\"}g “The problem of existence of a continuous f
with € {f] divergéat everywhere, or almost everywhere, i3 not
solved yet anq\s'eéms to be exceedingly difficult. However it s
a very simplé _matter to construct a continuous f with € [f] di-
vergent insa/hon-eoumerable set of poinis. Let 7y, Fy - be now
the seg@énée containing any rational point of the interval (0,27)

infi\iii&ly many times and let f(x) =3 &% Q (x — rs, 2%, 2¢). Here
L A=]

'} 15 continuous, and to obtain & [f} we simply replace every @
by the expression 8.11{1). At any rational point, < [f] will con-
tain infinitely many blocks of terms with sums exceeding &% log 2
for some, arbitrarily large, values of £ It follows that &[f] has
the partial sums unbounded at an everywhere dense sei of points.
We know that the set of points at which a sequeace of eonti-
nious functions s{x) is bounded is a sum F, + F, + ... of closed

) Steinhaus [7]. See also Neder [i, Zalcwasser |1}
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sets (§ €.11). [n our case no F: eonlajne an interval, and the
sum £, -- 53+ ... of non-dense sets is of the first category. It is
known ihat the sets complementary to sets of the first category
coniain werfect sgbsets, and therefore are of the power of the
continuum.

8.2. A theorem of Faber and Lebesgue. We shall show \
that the Dini-Lipschitz condition cannot be generatized, There ex:st
two continuous fanctions f(x), g (x), both having the moddms of
contingity G (1'iog 1/8) and such that S [f] diverges for x~0 = [g]
converges everywhere but not aniformily 1Y, We define f and 3¢ as the
sums of the saries 8.11(2) respectively, with o, =24 p; =n, = 2%
The arguizent used in § 8.11 shows tha‘t"@"[ﬁb’&%ﬁﬁﬂﬁs& Hifiidy
at x = 0, and that < [g] converges uon-umformly ill the neighbour-
hood of %= 0. To prove the inequalities forve (3 f) and « (3; g),
e g. for the former, let v=v (k) be the\largest integer 2 such
fhat 2% i/%, where 2> 0. Break up dhe sum defining f iato
two parts 7, {x), Jfa(x), the latter consrstmg of terms with indices
>, We have then | fy{x + &) —j,{x}] LW R4 )=
=4C. 277 L 4Cflog 1/h. A sunp{e calculation shows that

Qx, py 1y = — ( (. + n) Q(x,;x,n)wsmpux—...—sm(p,+rz—1)x+
+ sin (u -}-i?zh- D x4 ... +sin (e + 20} x,

so that | Q'(x, p, M \(P- 4n) C+2n <+ m(C+2)=nl if we
suppose that y,\-—q*t 2(C+2y=C". By the mean-value theorem
we see that ,{{gx{- k) — fi{x)| does not exceed

Ck@ ot porefy 422 =02V 2 Y =
K \ _ 0 (2~ = O (1/log 1/%).
T‘herefore (f{x+m—f < ifile+R)— [+ [ flx+ B —filx) =
‘0{1jlog 1/4) and the theorem is established. Arguing as in

§ 8.13(ii), we can make € [f] diverge in a set everywhere dense,
and £ [¢] converge non-uniformly in every jnterval.

) Faber (i}, Lebesgune {1]. )
}) We use hers the following proposition: if, for a positive sequence
{’"k we have ity > ¢ 2> 4, then wmy, + my 4 ..+ m, = 0 (m); tor

"‘l+f"z+ Ay bm<m (g g TR <1~ D
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8.3. Lebesgue’s constants. This name is given to the
numbers

17 2 jisin (44
1 Lo= = [ \Dult) dt = LA at,
W '_f- o a/ 2 sin & ¢

Let s.{x; f} denote the n-th pariial sum of Z[f] Tt is plain that,
it [F1<C 1, then ; 5.(x; £} <{ L., and for the function f{¢) = sign Dy N
we actually have 5.0 F) = Ln. The latier function is discontinuous
at a finite number of points, but, smosthing this furxrhon\sllghlly
at the points of discontinuily, we can obtain a coniinuoug <,
such that s,{0:f) > L, — ¢, whatever 2> 0. Thus, fér -y fixed z,
L; 18 the upper bound of |s.(x; /)1 for ali " A continuous
£ U= 1. For this reason It is interesting teMuyestigaie the be-
haviewi - BPEIIRIIY L8 We  will prove that L, = (4= log#
B 1o oot AN

Since the function tetgpff—1/f i‘sfbéilnded for ¢ <=, and
< 1ntl, we have

N

2
Ly=—"" ._B_“'_‘_fi_f__ di L O (1.}"_ 2 ] Lsinnt Loy =
2 e atl h n |
== }j LS_“}__ 2 4
= & k{.n d{+ 0(1} fblnnz{ oy Iat—;—()( )

The sum in (hrly brackets, coniained between the numbers
A (L 4+ 1/2 L 1 ~ 1)) and as-*(1;2 4 1734 ... + 1n), is equal
to = n{log ﬂ‘—P 0(1)] (§ 1.74). Since the integral of sin nf over
O, =1} is eq'ﬁai t0 2/n, we have L, = (4/2) log n+-G {1) = (4/=%) log &

Sm We have proved that, it # is large enough, there exists
a coutinuous f{x) = £.(x), fi| < 1, such that s.(0; f) is large. This
fapat:on depends on 7. To oblain a fixed f with s.{0;f) unbound-
““ed’ we appeal to Theorem 4.56(iv). If we replace in it y{f} by Dilt)
X (£} by f(t), and use the faet ihat L, oo, we deduce thai there

is & continueus function f(x) with Lim P5:40; F) =+ o e Theo-
rem 8,1%).

N Fejér i8).
*} Theorem 456(iv) (which is due to Lehesgua [2)) lies rather deem

and in the case y, () = D,{(t) it is vot diticuit to prove it direstly, We rafer
the reader to Lebesgnes Lepons.
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8.32. Let %, be any sequence tending to + =~ more slowly
than log n. Since the integral of . Du(#)|/, over (- =, =) lends to
+ o, applying Theorem 4.56(iv) again we have:

For auy sequence 3, = o (log n) there exists a continaous f such
that sa(Q; f) == by for infinitely many . In § 273 we proved that,
for any continuous f£, s.(x; f) = o (log a3, uniformly in x. Now we

see that titis result cannot be improved. ~

The above theorem can also be established by the method
of § 8.11, ¢\
¢\ w

8.33. Applying Theorem 4.55 in ifs most general form to
the proof of Theorem 4.56(iv), we obtain a result frgm Which we
econclude that the set of continuous fﬁ“f]‘é’t‘i‘ﬁg‘kf‘\{wfﬁa@ﬁ‘]gtl&-
vergent ai the point 0, or at any fixed point,Jorms a set of the
first category in the space C of all conlinm){a and periodic func-
tions. Thus the set of continuous funetiéns” with Fourier series
cenvergent at some rational point or apo}her ia again of the first
category. In other words, if we rejett from the space C a set of
the first calegory, the Fourier gez‘{es" of the remaining functions
kave points of divergence everywhere dense.

8.34. As a last appliéa’t'ion of Theorem 4,56(iv) we shall
show that, in a sense, thé“\Dini condition of § 24 cannot be im-
Proved: Given any corg{ﬁzhﬂas i (£) 32 0, suck that p (£)/t is not in-
tegrable in the neifeBbotrhood of £ =0, we can find a conlinucus
function f, such that f (6 — F(O) < w (2) for small i1, and none the
less 2 [7) di-ve?{g'és"at t=490.

Let si%) be the modified partial sums of Z[f] (§ 2.3).
Pat Q) enw() sin ntj2 tg L&, Tf M [74) <= O (1), we can find a
contingodis g (x), ‘g 1, such that the integral of 7.{f) g (£) over
— %) is vabounded as # »~. This means that Z[f], where
ji(x}: g (x) 1 {x), diverges at the point 0. Since we may freely
Stppose that b (0) =0, we have f(5)—f@O) =[O <n().

To justify our assamption that M [7.] =& O (1), we prove the
following lerama: If 2 (%) is bounded, } (x) infegrable, both periodic,
then

(1) Iy = f a (1) B (x) dx > ./:a(x) dx | 3(x) dx



174 Chapter VIIL Divergence of Fourier seriea. Gibbs's phéenomenon,

as n>ool), Wa begin by the following observaticn, the proof
of which may be left to the reader: If, for every : > 0, we have
B =8 + 8, where M [f,] <e and the relation (1) ho!ds for §, and
any bounded z, then (1) is true. Now (1) is ceriainly true if B
is the characteristic function of a set £ consisiing of a finite
number of intervals. Therefore it holds true when £ is opes,
or, more generally, measurable. Thence we pass to the case of §
agsuming only a finite number of values. Sinee we can approsi
maie uniformly to any bounded 8 by such functions, we conclude

the fruth of (1) for @ bouaded. If§ is integrable, we put t @H-?zs
where_J, is bounded and ™ [B,] small.

Let us now put a(f)={sinzj, B () =1 () ﬁ*g £ for
0<e<|ti<®, §(£)=0 elsewhere, and denote thb, carrespondmg
integraly ﬁ’,bwlﬁfé)"ys{hgelma [2a] = fale), we hawe the mequalitles
lim M fa] 2> Jim /i(e) = lim Jo{e}. The tunctigu ) (£)/21tg1{ being
non—mtegrabie, we may make lim /,(¢) as{large as we please,

if only ¢ is small enough. This shows that W Iyl -+ oo, #nd the
theorem is established.

The case p ()= o (log 1/it )‘I (we may put, for example,
p{f) = (log 1/1¢| log log 1/ £~ foi* small £]) is of special interest
in view of the Dini-Lipschitz fest (§ 2.71).

Consider a continuou® function F{&) with € [f] divergent al
the point 0, and such" \that F@ =0, f()=ofoglj ¢t Let
F@) = F), ft) =0dor 0 <t <z, and f,(f) =0, filt) = f () for
—z{¢<C0 8inge, f=f, +f,, it follows that at least one of the
functions f,, fw\say fi» has a Fourier series divergent at the
point 0. Congu:ler the interval (a, ) = (—=/4, 0). It is plain that
the modulusiet continuity of the function f, in {(a, b) is o{iog 13
and thatﬁta—t) f(@)=o(og 1)1, fF b+ 1)~ f (b) = ofog 11"
as t—r~|—0 In spite of that, 3[f,} does not converge vaiformly in

’the\mterval (2, 8). This resuit justifies the last remark of § 2. T2

) 8.35. Lebesgue’s constanis may be defined for any method
of summation if we replace D.(f) in 8.3(1) by the corresponding
kernel, In the case of the method (C, 1), or Abel's method, Le-
besgue’s constants are all equal to 1. As regards the constants

') Fejér [8l. Thls lemma will be applied only in = special case of
« conilnuons, asd § continvwous ezcept st a finite number of points. We prové
it in the general case since it embraces Theorem 2.211.
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LY corresponding to the metod (C, k), 0<%<1, the following
result has been proved. LY tends to a finite number 1) > 1, as
no oo, For any 0 <<k <1, there exists an f(x), |f| < 1, such that

limjon(0; /) = L%y,

8.4. Kolmogoroil’s example. There exists an integrable
function j{xzy such that & [f] diverges everywhere ?). Q.

Let f{xk fi(x),.. be a sequence of trigonometrical potyno-
mials of arders v, <\v, <{,.., with the following properties (i) f,,(x‘)"} 0,

iy

(it) [ﬁf,,(x} dx = 2n. Suppose, moreover, that to every L Eérresponds

1 a A .

an integer i, where 0 <k, < v, a num berwﬁ‘,’,%%ﬁ‘é’ RSSO R R,
such that (iii} if x ¢ E,, there is an integer B=ky, hn < & < va
for which ss(x; £,)> Ag, (iv) dr = 0o, (V) hpstad, (vi) E,(CEy (C oy
E +E,+ .. ={0,22), Under these conditions, if {n.} tends to ec

sufficiently rapidly, the Fourier series 'af" the function

(1) S @ = STl A,
diverges everywhere. N

First of all the sefids in (1) converges almost everywhere
to an iotegrable sum gravided that the series 1/yAn, +1/yAq, + ..
converges. This follgws from the fact that series with non-nega-
tive terms can by integrated term by term. Let us put n, =1
and assume {Hat the numbers n,#,, .., M have already been
defined. ThéMumber 7 will be defined as the least integer sa-
tistying_the{conditions:

(&J\'\)»n: = LT .(b) An,- > 44 gy (¢ VE;;_J> Yoy~

R :,\"'Fl‘om (b) we deduce the convergence 0f 1/y An + 1/ An,+ -, 80
\;F;at f (%) exists and is integrable. To prove the divergence of S [f.],
¢t X be an arbitrary point of E,, and let f=2+ v+ w, where « is

the (/ — 1)-st partial sum of the series (1), and v = fu/V An;

D Cramér{1). .
) Kolmogorcif [8]. The construction of the text is slightly differ-
ont from that of the original paper. The modifications have been suggested

te me by Mr. Kolmogoroff.
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hence sy(x; f) = sk 8) + si(x; ¥) + el @), In virtue of {ii}) there
i a k= ke Ay, <k < v, such that

@ Su(%; V) 2 VA,
From (a) and (i} we see that
)] S{xsa)=n{x) =0

Finally, since for any integrable g we have |sid{x} éllN

L (251 M g; 0, 2n)/x, we find that | so{x; @) | < 2(2R+1} {1/ ;\Xn!_ﬁ-%
+m/A,., yoFd < 12&!‘/.4,,“1412%“/,4,‘, 1< 12, From {h1s ‘and the
inequalities (2}, (3), we conclude that Sx{x;f) = ;é 72712, Since

every £ d0r-2a)ithelangsgtin Er, for all ¢ eufficiéntly large, the re-
sult follows, O

8.401. If remains {o constract *he\pblynomlals fu and to
show that they possess the required ‘properties; this is the mos{
fundamental part of the proof, The ‘function f.(x} will ke defin-
ed as a sum of two po]}uomlals & (x) and ¢ (x),

Let us fix n, put x = 21"5;:(2!;-!— 1), i=0,1,..,21, and con
sider the intervals J; = (x; —%3%,+ 8). If § is small enough there
is a non-negative irigonometrical polynomial ¢ (x) of order M=n
with constant term edital to 4, and such that ¢ (%) 3> n, say, in
the intervals /. Fo(it is sufficient to put ¢ (x) = Ka{(2n + 1) %}
where K, denoteg\Fejér's kernel and m is large enpugh. Since
we may take 878 small as we please, we may suppose that
Du(x) = 0 .i{..t'ha interval (— 3, &), where Dy denoctes Dirichlet’s
kernel. /&

?{e}t"wa put

,..\3 \ N G (x)= n-—% :=Zu Ko X — x21),

where M < m, < m, <..: the numbers nt,, m,, ... will be defined
later. If my < & <<y, then

sy )y = _'}Ci;‘g K (6 — %723+
b Sl me—i }
+.'s + li=i { = —m:IT cos { (x — %)
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Since oy —i+1=(m—k)+(k—1+1) and Ki(x) >0, we
obtain

(1) salx; ) 2

= m;—k
n -1}- le—fim; 4+ 1 D = xa) SRS My,

8.402. Let us denote the intervals (x;+ 8 Xy —8) by /)
i=0,1,2,..,2n and suppose that x ¢ f}; or that x ¢ /{;+,; in par-
tieular Xy < X <Clayyp If 28641 ig a multipie of 2n -1, then.,
sin (k4 4) {x — xy) has the same value for every {, and from
8401(1) we obtain O\
sin (B+3) (B2 —2%) © mi—k 1%

n+1 isitim4+1 2 sin(%{‘gg; — X)

It {s not difficult to prove that, wihelmemphrarmgug,in..
increase sufficiently rapidly, then, to every x beIg'ﬁEﬁng either to
By or to fiyy;, corresponds an integer % =k, badsfying the ine-
qualities m; < &< { myyy, sin (B + 1) (X310 —2)> L, and such that
22+ 1 iz a multiple of 22+ 1. Let us_take“this result for gran-
ted; we shzll return to it later. Takibgveuch a value for &, we
obtain from (1) \ ¢

"
~

| S SR M | 52wt 1

Sk(x; PY e —— — e —— -

2 n Li=itt 2060~ %) 20+ 2011 8r (i — f)

ke, sa(x; 9) 2= C, log (n — j)°C, i, Cy» ... denoting positive abso-
lnte constants. If j < ni——)/}i, then ss(x;9) > 4 C log n = Clog 7.

8.403. Let us_ptit\Va(x) = ¢ (x) -+ ¢ (x). If x e fy;, or xellyy,
J<n—yn, there 0y an integer k> m > m, > M such that
S{x;9) = C logyil s Henee we have sux; fa) = si(x; ) + % §) =
= ¢ (0) + si(g9).2 Clog n.

Now We shall investigate the behaviour of &(x;f:) in
the interwals /. We shall show that su(x;fn)>3n for xel
and #, :S:ufficiently large. The right-hand side of the equation
S 9) = sm(x; ) + sulx; §) consists of two terms, the first of

hich” exceeds n for x ¢/, and we will show that, if x e J, the

setond term is dominated by the first (this is just the reason
Why we define f, as ¢ +¢). More precisely, we shall prove the
inequality s(x; 4) > — G, logn for xel and n>1, so that
Sulx; f) 2 n—C,log n>4n for xel;, n>n, _

We first suppose that [ is even, =2k If k=M =m,, we
have the formula 8.401(1) with j=— 1. H xefy, the term { =2
in the sum on the right is positive in virtue of the condition impo-

W

1) sz 4) =
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ged on the intervals /. If this term is omitted, the inequality
8.401(1) holds a fortiori, Since | Dh() | < mflur, for ! <<m and
since |x—xg,-[>21:|k-l[f(2n+1), we obtain that

1 7 2r41

1) smlxeydy > ——= — > 1 >1 b,
(1) smlx; ) > PERP Yy ST slogn, n>1 xep,

where ' denotes that i=%=h, O

If lis odd, i=24+ 1, we again have the inequality 8,%01‘(1)
With j=—1, £ = M. It is not difficult to see that |.x by [“0x-
ceeds a constant mualtiple of lh—11/(2n + 1), and, arguiny asin
the previous case, we obtain that S, §) > — C, log 7,468 % € Jopp,
n>1. This, together with (1), gives su(x; $) > —L{dog #, where
Xel, n>1, C,~= Max (G5, C,). Hence, as we “\Hive already ob-
served; ﬂ]?:@}‘%;’ﬁ? ¥ Pes n> n, \

Collecting the results and observing,t'hét Clogn<}nforn
sufficiently large, we obtain that fo eVery x in the interval
(En) 0 x < 47 (5 = Vm)i2n +- 1) corresgonds an integer k2> n, such
that s(x; f2) > Clog n, R> 1. The redder will have no difficulty
in verifying that the functions _fSsatisfy the conditions of the
lemma established in § 8.4, a;:leaiét for n sufficiently large.

8.404. There ig one'poiﬁf in the preceding argumsent which
requires explanalion. Wemust show that, if the numbers m,, My
Tncrease sufficiently rﬁgldl};, then, to every x belonging to [ fy4y,
corresponds an intege satisfying the inegualities my k<t mp,
sitt (B 4+ 4) (x4, 0 > 4, and such that 2% 41 is divisible by
2n+1. Let us put 2% 41 =p@r+1), so thatp is odd, and
Xyvr— X = 4elf@n 4- 1), Then sip (% + 1) (x40 — %) = sin 2nph,
and x belgligs to 7}, - Iy it and only if 6 belongs to the sum
of inte;;h*s"ﬁ SISE—n 4 +9<0<1— v, where 7 is positive
and gepends on § and #,

OLet My =M, and suppose that My, my, ..., m; have already
‘been defined. It is sufficient to show that, if p, is a fixed odd
integer, then there is a number v such that, if 6 beloags to
Mi—n)+{E+1, 1—m%), we have sin 27p6 > 1 for an odd integer ¢
satisfying the inequality p, < P <p-v. For, if m; denotes a num-
ber such that for OVery Xely+ Iy there is an integer
ko Sk < mlosuch that k-1 is g multiple of (2z + 1), and

that sin (k + ) (o3 — ) > i then we nay take for m;y, any
integer greater than 2m;,
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Now cousider the points pd where p runs through the se-
quence pg, po+ 2, o+ 4, .. It p is increased by 2, 9 increases by
2, i. e. by a number the fractional part of which belongs to the
interval (27, 1--24). Consider the following three cases (i) 26 € (24, 1y},
(i) 29 € (Y. %5}, (iii) 20 € (%3, 1 — 27). In case (i) the situation is
fairly simple; for the length of the imterval (Y, %,,) is equal to
Y, and sa after a bounded number of steps the point pf will,
certainly fall into this interval i. e. we shall have sin 2rpd ‘> %
In case (iii} the argument is similar.

In casze (ii} the sitnation is slightly less simple for, if 99', and
26 are both very near (mod I} to tbhe number /,, the sequence 8p,
P 2> by, may atay outside the interval (!/,, ¥/;,) for a lougtlme Con-
sider the casea (ii') 20 e (¥/y, /), (ii") 26 € (Yo iy OO Y3/ T 81T,
In cases (i} and (ii"), 46 belongs to the intervald((¥/}, 5/), (Y5, ¥
regpectively, and so, arguing as before, we see _that, after an even
bumber of steps, fp will fall into the mterva}}(*f,,, 1a).

Now suppose that 20 e (%5, 12} (e " ey, i 6. 0 belongs eit-
her to (¥, 1) 0t to (31, 1), e, g0 the former interval, It
is easy 10 see that, if » is even and positive, and if mf belongs
either to (Y ,, %) or to (¥, “/“I, then, after a bounded number
of steps, the point pd, p 3> py, wﬂ} reach the interval (Y12 */12). Now
we observe thai the numbers™g, — 1, ps + 1, 28, 8re even and that
(8) it pof € (Y, ¥/15), we miay put p = py, (b) if pd € (%45, '/1,), then
(oo~ Dbe { r’lp» ik, (Qzlf Pog € ( fs2 sfu)a then 2009 € (3/,,, ){12), (d) if
ATEC fim 1% 10}, then 3 2) 6 e (Y Mok (&) if po8 € (%yq, 11/,,), then
2p, e (312 ¥ 10), (£} If' pag € {1/, 13+ (0, Yy,), then (g, 41} 0 € (Y5, */10).

The caseN30'c (*/12, 1) 8 € (12, %1p) may be dealt with in
the same Wﬂ)&"&nd Theorem 8.4 is established completely.

5\ Gibbs’s phenomenon. We shall now investigate the
behﬂviour of the partial sums da(x) of the series

.'\(I) smff__d(x) =4(x—X) 0 < x < 2r)

v=1
in the neighbourheod of x = 0. Suppose, as we may, that x >0,
Since tetglt--1/t is of bounded variation over (0, %), we have

bt dix) = j Dty dt = ESEL’E‘ dt+o(l)=

gt
dt+o(1)=ffi—:’—td~*+0(1).

JEsin.t'xt
=6} ;
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where the Jast term tends to O umiformly in x (§ 2.2i38). From
this we deduce the approximate formula

nx
sin

{2) dafe) = f

where the error is <{s, provided that x <7, # > ny(s}. Let ns put

dt + o (1),

oz )-—fﬂm d dt. The integrals of (sin £)}/f over the intervales

k=, (k+1) #} decrease in absolufe value and are of ahernatmg“mgn
when & runs through the values 0, 1, 2, ... This shows that {he eurve
y=¢(x) has a wave-like shape wlth maxima M, > fk‘;/M >,
atteined at the points 7,37, 5, ... and minima my2 S, < g <
at 2z, 4w, .. From the rejation dy(x}—+ 4§ (x — x) mm the equatwn
.ﬁ’jw—‘“’ d%‘:@”—f-l FEROTE 1), we see that p (M) as u — o9, j. 8.

N
fim—tdt
it 2 \

n
Substituting x==/a in the formula (2), %o obtam that d,(=/n} »p {7} >
> (o) = 4=, Thus, aithough d,(\tends to 4 {x) < iz for every
fixed x, 0<C x <=, the curves = da{x), which pass throagh the
peint (8, 0), condense to the mxerva[ 0 < v < ¢ (7} on the y-axis,
transcending the interval 0 < ¥ < d (4 0) in the ratio

sin ¢
it d ¢ ==
\~§t == 1.089400..,

Since the dn{x} are odd fnnctions of x, a simjlar situation
occurs in they le‘ft—hand neighbourhood of x = 0, where the curves
M= du(X) (,or'l\éense to the inferval — 9 (x) <l ¥ <L 0'). This phe-
NOMeng 15’ ‘ealled Gibbg's phenomenon and may be described,
quite génerally, as follows. Let a sequence {f.(x}} converge to
a fanetion f(x) for x, <x < x, + &, say. If, for 7 and 1/(x — X
Aduding to + oo independenily of each other, lim f(x) > f {x, + 0),
Nor it lim fu(x) <7 (%, -+ 0), we say that {f,(x)} presents Gibbs's
phenomeron in the right-hand neighbourhood of the point X,
A similar definition holds for the left-hand peighbourhoed 9.

Y} For interesting grapbs and a wmore detafled discossion wa refer the
reader to Carlala w's, fntroduction to the Theory of Fourier Series and Integrais.

*) See Zalewasser [l], where a discussion of some problems con-
nected with Gibbs's phenomenon is given.
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8.91. Let f{x) be an arbitrary function having a simple
discontinuity at a point & f(€ +0) — f —0)=I£0. The funétion
d(x) = f{x) —{-d(x — &)= is continnous at &. Suppose that & [4]
converges uniformly at the point & (§ 2601). The bhehaviour of
8.(%; ) in the neighbourhood of ¢ will then,in a sense, be domin-
ated by the behaviour of s.(x; {-d {x — £)/n), and so Gibbs’s phe-
nomenaon will ocenr, Thus, in particular, if f is of bounded var-
tation, < [ f] will present Gibbs's phenomenon at every point of aimpfe\
discontinuity of f1). O\

8.532, The formula 8.5(2) has interesting applicationg™)> Sup-
pose that f(x) is of bounded variation and ¢ a poir;t,'pf'discon-
tinuity of /. Let {#.} be a sequence of numbers such"t}]at"mkm—rH.
Making the decomposition f (x) = 4 (x) -+ M tedbgiehibuay inte {he
formmla \/

SuE - o __))_’(E-i—ﬂ)-f—_f(E—O)+f(5+0)—f\\(ﬁ~——0)_3fﬁsintdt’

: N

where s.(x) = s,(x; f). Taking for F>3ué of the infinitely many
roots of the equation ¢ (1) = 7/2 (in particular 4 = o), we obtain
the formulae: s.(¢ + k) » i —i—»jﬁ)j," Salt — ) » F(§ — 0), where
fu= Hiun it H is finite and, for example, 4, = 1jyz it H = oo,
From these formulas we gbtaiﬁ, in particelar, the value of the
ump f(&+0)— (¢ — 0)¢¢

s \J

8.6, Theorems of Rogosinski*. In the preceding para-
8raph we obtainelhcertain results concerning the behaviour of
Snls + b £, provided that f was of bounded variation. It will
appear that gipiilar resvlis hold in the general case if we con-
sider the syidfieiric expressions & [Su(é+/) + 5. —#s)] instead of
er(i -+ f2%~ p

881, (i) if 0, = O(i/n) and if the series 8.11(38) *) converg-
ES@ha point &, to s, then }[sals -+ ea) + Sele — 2] > 5 (i) {f this
Serfes is summable (C,1) at the point & to the value s, and if
*a=0 ([,"fn), then
M 1 [Sa(z + 22) + 548 — 2,)] — (8a(2) — 5) cos #az > §.

:) Fejer [3], Rogosinski 121

" DuBoisReymond [2), Fejér [3].
¥ Roposinaki [3], [4].

"} mot necessarity a Fourier series.
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Abel’s transformation shows that
a—1

(2) 1 0n(E 4+ 0n) + ulE — an)] = X 5u(8} 4 cos kx, - Sq 208 N

k=0
Here we have a linear transformation of {s.(i}}, and the reader
will verify that Toeplitz’s conditions (§ 3.1) are satisfied. In part-
icular, the condition (iii) of Toeplitz follows from the inequality\
| 4 cos ka,] < an == O (1/n).
This completes the proof of (i), Making Abel’a transforma-

tion once more, we obtain, for the left-hard side of (2 theex-
pression g o

-\
n—% QY

(8) X (k+1)0ud° cos kty+ 0,y 24 coS (11— 1) 2nH{3n cOS 72,
k=0 e

whirs. tiradiibraayer s first arithmetic means of the series
considered. This expression without its last terh {s a linear trans-
formation of {s,}. Toeplilz’s conditions gl\and (i) are again sa-
tisfied. Supposing, in particular, thaf)3, = s, =5 =.. =1, we
find that the sum of the coefficiehts of o, in (3} is equal o
(1 - cos nm,). It follows that theétNekpression (3) deprived of its
last term and divided by 1 — c8sna, tends to s, and this is just
(1). As a corollary we obtaitjo '

If B.11(8a) is @ S {f1,% a point of continuity of f, and p any
fixed odd number, thes §Ys,(& + prj2n) + 54 — prj2m)] » f (§).  This
relation holds uniformly in any interval of continuity of f.

8.62. We Knbw that, it § is a point of continnity of f, then
Jos(E + A) — SN e for k>, || < 81). Hence, for any sequence
(e} > 0, wedbave | 0u(t +hy) — F ()| < &, & < 1 < o, where & D
It follows Yhat, if o = 6§ + £a), 1 < & < n, 2, = 7/2n, the expres-
sion §BI3) is f(§) + 0 (1), and so
N If S:(x) = &x; £} and & is a point of continuity of S, we have

) % [Sa& - B+ #/20) + 83 4 s — =/2m)] > f (D)
for every (A} -0,

In § 811 we learnt that s.(x; /) may be unbounded in the
neighbourheod of a point of continuity of f. The'last theorem de-
tects a certain regularity in the behaviour of the curves y = salk)
for |x —&| <5, the arithmetic mean of the values of sx{x) at the

N

1y Se¢e footnote %) on p. 52.
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ends of intervals of length =/n differs very little from f(&), and
the less the amaller ¢ and 1/n are.

8.7. Cramer’s theorem. We shall now stndy Gibbs’s
phenomenon for the method (C, 7). From the inequality 3.22(1)
we deduce that Fejér's sums cannot present Gibbs’s phenomenon.
Moreover it is easy to see that, if this phenomenon does not exist ~N
for a valve r; of r, it cannot exist for any larger value of r.
For, if s,{x) denote the Cesaro means for S[f] and if we ha¥s
m—e oy < Mde for |x—8| <mn>n, and if A7
then m — 2 <Cafx) < M4 2 for |x—&| < n> m (§ 313).
It is therefore sufficient to consider the case 0 < r < o\

: ibrary orgi
There exists a number 0 <r, <1 with the ?’gﬁg [ gaﬁyoleegtj)r}
If f is simply discontinuous at a point &, the (C, Qmeans ax(x) of
S [f] present Gibbs's phenomenon at & for r < rp,:bbf'not for r=r, ).

8.701. It is sufficient to prove thp'}haorem for the series
85(1}), for which we have the formulae \.)

W) 50 = ~px+ [Kie) dt, S =t -9 [ Koy

Where K7 denoctes the (C,7) ketnel. Lot us consider first the case
’=1. Replacing the Jengminator 4 sin’{ ¢ by %, we find, as in
§ 85, that L\

. x
(nt1ly
S\ sin

(2} Gﬂ{x)z— Jzux + f t: d df'f'Rn(x),

:“\s.
where c,,(:v*¥“ o5(x), Rf(x) = O (n') = o0 (1) uniformly in x. Since

%(X) > @3 x)/2 for 0 < x < 2x, we obtain from (2) that
4 .\’ $

N\ “"(sin ¢

8y |/ , )is::p:.

Q
From (2) and (8) we deduce the following proposition which
%ill be used presently. Given any number.!>0, there exists an
2=:(0>0 and an integer ny=nyi), such that ofx)<=/2—e for
ngail}'ﬁ, n>n,

—_—

} Cramér (1. Gronwall [2] showed that r, = 0.4395518...
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8,702, Next we require a formula for K.(#). Snch a formula
wag found in § 3.3(3). Applying Abel's transformation to the
last term of it, we find that Ki(f} is equal to

f{rHi) TS = L T
B e e e
2An sin F (1 — ey 1—e# wppn T 1—e
_ L sinfrtdnt—dm) s 1 5 Sr—nYN
A (2 gin & #yH n41 (2sini o) 7 2singty

where {91 <1 (see § 1.22). Integrating this expression oyer (£, )
and applying the second mean-value theorem to the fizst-integral,
we obtain from the secand equation 8.701(1) that oj(x)i¥ equal to
r 26 .'“.\\ B
B abdfmiliy grgpt e b5+ ot SR T
where !6,| < 1, and !B} is less than an gb3olute constant.

It was implicitly proved in § 3.12’}hat there exists an a0
solute constant C such that A, > CAOf 2> 1, 0 <L r <1, This
shows that, if nx is large, of the idst three terms in (1) the first
ig the largest in absolute valug.'fl}hérefore there exists a number /
such that |si(x)| < =/2 for Ja< x < %, 12 <7 <L, n >

Now we will show,4hat, if 1 —r is small enough, we have
Lon(x) | < /2 for 0 < x.& Wn. Taking into accouni the inequality
ALl AL = Arl A, Wl‘gi}:.i?s true for 0 < k< n, —1<Cr<s, we find
that | on{x) ~- a;{x}} is less than

n A:;; A‘wy . ! 741 s41 5 S__r)
(2) by (‘—r— - n_"s_)|?12_"’_‘| <x [._’*_r_wf‘ﬁg ] = ._”._(_—T)-
SV A, Axf1oy CAL A DGt
It s=1\'1"1}e last expression is less than L ax {1 —r), and 50 it is
sufficfent to take r such that § (1 — ) £ < < {{) (§ 8.701).

V8708, We have proved that, if  is sutficiently near to 1, o

““safnot present Gibbs’s phenomenon. To show that, if 70 18
small encugh, Gibbs's phenomenon does occur, we consider the
expression |on(x)—s.(*)| which, in view of the inequality 8.702(2)
is less than xnrf(r-+1). Since si(n/m)+p (=) >=2 (§ 8.5), we
conclude that Gibbs’s phenomenon certainly occurs if we have
wrjir + 1) <9 (7)) — =/2.

Y For a different proof, based on complex integration, of this formuld,
ses Kogbetliantz [1].
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8.704. In the previous sections we established the existence
of a mamber r, 0<<r;<{1, such that for any r>r, we have
Gibbs's pheromenon, whereas for # < r, we have not. It remains
only to show that for » = r, the phenomenon does not oceur,

Let », be any positive number less than r,. From the for-
muia 8.702(1} for o; we see that there is a number !, such that
|loa(x}| < 4% for r, < r< L, ifn < x <% From the inequaliti,
8.702(2) for |27 — 0a| we see that sh(x) is a uniformly continuohs
function of 7 in the range r > 0,0 < x < l/nn=1,2, .. ¢it'the
Gibbs phenomenon occurs for a value r>r, that ig iff there is
a sequence {x,} >+ 0 such that ]Un(xﬂ)|>*1+5 then I}éx“{”ﬂ
and so, if . s — r| is small enough, losx)|>1 ,..+§e This shows
that the Em of r for which the Gibhs ph’éﬁ‘d’rﬂéﬁ‘&l’ﬂ@l}'@hi’sofﬁ%

open set, and the theorem is established.

] NS
8.8. Miscellanevns theorems and axmi:,g\es,
1. The Lebesgue constant L, ia equal )

=a

g 2 L4+ +~1f[2v {2-‘1-{—1}—11}-‘{4\43-—— 1.
k4

From this formuls we sse that {Lsn} is an inereasing sequence. Szegd [2].
[Consider &[lsinx|] (5482 and the formnla
{sin kx)/sig x&pin x + sin 3x 3. 4 sin (26— 1) x].
2. Theorema 35(1\0\6 3.5(ii) are false for r=1.

™

[To prove the\hrst part of this assertion, showthat[am ] K ()] de == O(1).

where K, denﬁ%s Fejér's kernel, and apply sn argument similar to that of § 8.31.
For the sé\ond part we refer the reader to Hahn {2]).
3 A series z,+-u, 4 .. is said to be summable by Rorel’s mathod, or

"“m'ﬁahle B, fo sum s, if & ¥ Zs x"{al—+s a8 X >, Where §, =ty ... -f 4,

=0

how that

(i} If a series is convergent, it iz summable & to the sime sum.

{i) A power series may be summable B outside its circle of converg-
€0ce, 80 that the method B js rather strong. Nevertheless,

(if) There exist continuous functions with Fourier series non-summable 8
® some points, Moure 1l

(v} I [f (e, L i) — f(x)llog 1) k| ~0 witd &, G[f] is summable B at
the point x,, to the vaiue f(x;). Hardy and Littlewood [2].
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TAd (i): apply Toeplitz’s theorsm (§3.1). AQd (ii): the series 142422+,
Ja summable & for Mz <71, To prave (iil} it is sutficlent 1o observe thai the
Lebesgue constants corresponding to the method B form an unbounded
function, These comstants, which are equal to

if g—li—cont) | 8in (xsint 44 }] i,
© 2ainkt

™\
arg o! order log x. Propositions (if) and (iil) show that the methods B \and
(€,%), %0, are not comparable]. 2 AN

4. Consider a seguence p,. P, .. of positive numbers, with Qhﬁzﬁroﬁsr-
ties that P, =g +p 4 py 2o p P, +0. A series uc—j—uz-}-}‘:. ia said
to be summable by Norlund's method corresponding to {pi.ﬂr summable

N}, to sums, if
WWW. dbraulibr ary.org.in

Sy =ASo Pyt 81 Pp gt S VP, = (e Py Jf‘ N, pn!a"P - S
{ \
an e It P,=AF. 270, we obtain, as a spec}al’casa, Cesiro’s msthod of
summatjon (§ 3.11). Show that O\

/N

(i) It Xy, converges, it is summahla N{p } to the game sum.

() 1 0<p<p <. nnd il E’n ‘is summable (£,1), it s also sum-
mabla N {p } to the same sum. Ta‘m arkln Fourier series, p. 156

5. Let pv>pv+‘—>0, Py s, A nacessary and enfficient condition that

the method N{p Y shouid s{tmg\c [£], to the value f{x), &t every peint of con-
Hinuity of f, is that the\\quence

o p—1
& i E

should be :bsi}inded Hille and Tamarkin [i, Tamarkin, Fouries
Series, 1%
&
JJaMthe first place we show that, it &, — O(1), thes the N{p} kernel
‘jn;i‘m’a’si-positiva {§ 8.201), Conditions (ii) and (ifi) follew immediately. T0
\ﬁr’p‘re {i) we argue ze in § 8.3 and obtain, for the kernel, the expression

i 1t
m;g;n—_zz)—ﬁ’_ivz,v cos (v )¢ m;s::it)tpn_‘ X o sing AR e=1 —Va

W=0

Applying Abel's trangformation {0 V,, and denoting by K, Fejér's kernel, we find
that M [V ; 0, =] does not exceed

M n—1 n—L
P [ {nt )2, Knrk T 00 dp i} it =t P {in 4 1p, 4 3 O+ DAR
i Vg

=0
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The expression in carly braclgets is aqualte P, 40 that I} [V 0, n<¥m, and every-
thing depesds on the behaviour of MU Om] =M{U,; 0, Yn} WL 1im ],
It is easy foc see that U, =0(m in the interval 0= f< 1jn, 8o that
WL, 0, 1in] = {1} Now Abels trapsformation pives, for {7, the value

sin(n-1)¢f sin(r+1: G sin (v +1)¢]:
(1) —‘pﬁ—‘_{p" mr"‘gn 4, Tasinyf
N\
n = FA
R [sig{v413¢] ,, v 56N
Observing thatﬁ[ 4sin2_}4t_dt_ ]J +1{ L +1}U‘!W+

k3 N\
+ f — i‘, = A+ log (N + Blv+1), v=1, where 'A? ond B are con-
Ly et www,dh,ri\u‘ijbrary.org.in
stants, we see that the absolute valus of (1} ictegrated over (l/n,x) given
lees than

B 71 A [t , xi\\' )
F Aty + S+ 4y +P—{ X dp, 1) log (ﬂf"")}—i- O (F " log n).
a W= Ayt L N \ v }

Here the first term is equal to 8. Making\Abel's transtormution, we see that the
second terme is equal to N

ay

2 Ap, Afn A :".‘2! n 1 B
5 logn += >, log(npy ~F 5 vayiog 1——|i=A4,+B,+C,
n LN o L # lv=z

S . .

It is not difficult to verity that the condition 4, = O (1} implies logn = O (P,),

Le d,=0(). Sinca\}‘og (1= 1~) = — 1+, we obtain C,= O(1). Applying

Abel’s tra_nsformqtioil; we see that B, = 0 () O(P1legn) = O(t). Henee

Ry 1/n, 7] =500, M [U,; 0,5] =0 (1), and the firet half of the theorem is

established. oo\

Tg g¥0ve the second hall, it is sufficient to show that,if T (U,) = O,

then 1,20 (1), Applying Abels transformation to U, and ohservm.g tl?at

i Bins{n}l_ YE| 2= sin? {n+41) ¢, wesee that the relation | [ ;0,=] = O (1) implies
P { .\'" ) kg ' a—1

\ P P“fssins (n+1)rjp cosltntidt, yp sin{v-f—l}t} dt = @ (1)

" V" Zsinyt T2

It is mnot difficolt to see that the integral, extended over (0, n), of the funct.ion

S0* {1 4-1)¢ . cos (n-+%}¢#2sin't is bounded. Hence, uaing the saquaticn

2sint (n 41y £ =1 —.cos 2 {(n 4 1)¢, and the fact that the integral over (0, f:) of

SR (- 1)fcon2{nt-1)¢ is O {1/n) for 0 < v <" a1, we aes that (2) may be written

T o1
gF;'f{ZP\,sin(v-I-l)!}dH-R:0(1)'

o W=
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where R= 0 (P, P, -+ v+ Py ¥nP,=0(1). From this we obiaig = O{1}
8. The partial sums d,(x} of the series sin x -+ Y% sin 2x -k ... ara positive
for 0<Zx< = Jackson [1; Landau [1}.

[Suppose that the theorew has been established for n—1 and that
dﬂ(x), 0 < x < w, attaina its mipimum at a point xy, 0= xy<Z = Since

d,(xo) = [sia (7 + %) x, — sin ¥} x,)/2 sin Yx,=0, . {\

we obtain that sin(n— 1) x,=sin %xy and so also |zos{n 1)« | = Xy
This shows that sinmx; = sin(n 1- 1) Xy coaly x, — cos(n 4 ¥ 1, sindx= 0,
do{xp) = d,,_{x,), which is impossible since the theorem js true for'g~ 1],
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CHAPTER IX, Q.

O\
Further theorems on Fourier cuefficiénts.
Integration of fractional ordetteiry.org.in

%.1. Remarks on the theorems of Hausdorit-Young
and F. Riesz. It has been proved in Chapter IV that, for any
tomplex fuaction f(¢) with Fourier coeffidients ¢, we have

i ~_|..,°\
&) o [17 @1 a<OF (o

A== i
~

This formula contains iWo propositions: (i) If fel? the
series on the right conver;gés to the sum equal to the integral
on the left {Parseval), (N ¢, is an arbitrary sequence such that
L, 2 converges, thege}is an fel® with complex Fourier coeffi-
tients ¢, satistying (1) (Riesz-Fischer). 1t is natural lo inquire
how far these resuiKts can be extended to exponents ofher than 2.
It appears thap“such oxtensions are possible, but only parily.
Here we shay' only state the results and make a few remarks
ahout thq@}"CompIete proofs will be given in § 9.3.

Givew' any function /(f), 0 < ¢ < 25, and any sequence {c,},
- °‘f{<5f <+ oo, we write

..\'.

O wp- L flf(t) ral s wa={ 5 jar]”

We assume that f and ¢, may take complex values. Using the
letters p apq ¢, we shall suppose, unless a statement to the
oontrary is made, that 1 <p < 2« g<oo. For any r>1 we
define +' by the condition 1/r+1/r'=1, so that p is a 4 4
I8 g 2.
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The following thecrem is due to Hausdorff and Yoang!).

(a) If fel? and c. are the Fourier coefficients of f, then
Ryle) is finite and Nple] < LA
(b)Y Given any sequence of numbers £n, — oo << 0 <+ oo, such

that MNfc) < oo, there is a function fe L¥ with Fourier coefficients ¢x
and such that Ap[f} < Nlcl.

Theorem (a) is an extension of Parseval's theorem, the
sign = being replaced by <(; Theorem (b) is an extensiongbfine
Riesz-Fischer theorem. In both (a) and (b) the argumght goes
from p to p', i. e. from the smaller number io the iagger. The
theorem would be false if we replaced p by ¢. F:orf(i) there is
a contigupns, fwaskipnrdisuch that ] :m:,t’oi‘ every p<2
(8§ £.33, B.61), (ii) there exist trigonometriggl\ series which are
not Fourier series and have coefficients cyN\shch that Pijc} <=0
for every g>>2; the series ¥ #n~' cos2” %(i8 an instance in poiat
(§ 5.4). Roughly speaking, the theorems bf Parseval and of Riesz-
Fischer are the best: we can neithersstrengthen the thesis of the
former, nor weaken the hypolhesi§ of the latter.

The reader will observe t@t between the two parts of the
Hausdortf-Young theorem there is a certain analogy. The second
part may be obtained frofinthe first if the function f, depending
on the variable £, is ’r‘e@aced by the function ¢ depending on ihe
variable #, iategration"is replaced by summation and vice versa.
This fact is explaiged by the theory of Fourier integrals, where
both parts of #h#” theorem corresponding to that of Hausdorff-
Youny coincicie. The analogy just stated can be detected in var-
ions theorems of the theory of Fourier series and is an important

guide dnMthe search of new results. We shall not investigate
thig subject systematically.

“\:'\'."9.11. The Hausdorff-Young theorem can be extended 1o

general systems of complex functions o,, %, ... which are orth?-

gonal, normal, and upiformly bounded (jg.!<M, n=12,..) 10

an interval (a,5). Let us consider an arhitrary function f®

a <t < b, and an arbitrary sequence of numbers ¢, ¢;, .., and put
1'r

WAF] = MAS; a, b]z(f srat) ', wia=(3 e

) Young (12), [t8] proved the theorem in the case p'— 28, A= L2~
The general result is due to Hausdorff {2
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F. Riesz’s extension of the Hausdoeff-Young theorem may be
stated as fellows1),

(a) I7 felr(a,b) and if ¢, are the Fourier coefficients of f
With respect (o {ga}, then Nylc] is finite and Ny[c} < Ma—rie MWL

(b) I, for a given {c.}, we have M|c]< co, there is an
felf(a, by whose Fourier ~coefficient with respect to @n iS5 Cn,
t=1,2, ... and such that My{f] < MEPeRlc).

N

Applying this theorem to the system of functions, (e
£=0, =1,., 0< x <25, we obtain the Hausdorff € ¥oung
theorem, N

<N

9.12. The Hauadorf!-Young theorem will be establish ':'z‘rs a corollary
of ¥. Riesz’s theorem, in § 9.3. Here we givé'\'}l":’xwi‘n e‘ﬁfé‘%. i aﬁ%‘%gf‘ [
former lhecrem in the sass P =2k i. e p=2rj2k—1hA>1.2,.. This case
I8 fairly easy and, what is mora important, iz certaib interesting applica-
tions of the Hausdor!f-Young theorem it suffices enfirely,

Given an fel. we put f(x} = f(¥) and \

ki

=1 Of GOSN P=23,.

From Theorem 211 we see that, iy ;Z“,; are the Fourier coefficients of f, those
of ; are ¢!, From §4.16(ii) we obtain, by induction, that, if «,2> 0, i = 1,2, .., J,
ota, 4. -,La_,- <1, then ...<

¢(\J j
%11’.-(1\}1_“,_%1 15l “"{_Q slirf(l—a,-l,[f I

Futting j:ze:\';,;;-azz_‘_z‘lfzk, and supposing that feI™ weo
obtain Wsf £ ) ;‘Qkf(ik—ii [f]. Hepce, observing that the Fourier coefficients

{2k—1}

of f, ars fﬁ sndlapplying Parseval’s theorem, we have

O S 71 > WA = 4 = gl
b & #hoa (113 Wyyfel; thia 5n just Thoorem 9.1() for /= 2.

\/ 9121. Theorem 9.1(b) may be obtained by a similar argument, using,
instead of the reasults of § 4.15, analogous results for sequences. We prefer
to follow a different way and to deduce Theorem 9.1(b} frem Theorsm 9.1{a),
0T, more generally, Theorem 9,11(b) from Theorem 8.11{a).

Suppose that Rfe] <l amd let fr=1tiq + oty A=1,2.. For
every function g with Fourier coefficients d,,d;, .. we have

—_—

) F. Riesz [6].
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1 b-_ 1' L | n lig n’ , 1y )
'| f fngdx;= 264, é(Z If-,ﬁ”) ( Xid, !”) < Myle] MU= M (],
o 1

the last inequality being an appllcation of Theorem 9.11(s). The upper bound
of the left-hand side, for all g with [g](l, is equal to Bt If = ﬂ]}p,[fn]
& 4.7.2}, 20 that

o) By L] < MOPHER ],

Since the inequality Slp[r] < oe implies Ny[e] < ==, the series fl‘f'-_"{"cv)‘f'vg—t-:n\
ia the Fourier serles of a functionm f (§ 4.21). 1f n tepds to — throupgh a parti-
cular sequence of values, then f (x}—=7{x) almost everywhere § «3H.8nd,

applying Fatou’s lemma, we deduce from (1) that 5_]]1‘ 1 -;’M(E_-”}"'?’ﬁl\[cl i e,
Theorem 9.11{b).

[n a similar way we could deduce Theorern 9.11(a) from, Ther,i'em 2.11(b),
30 that both theorems are in reality eguivalent. \

www.dbraulibrary.org.in
5.2. M. Rlesz’s convexity theoremsd), Cmsﬂder agystem

of numbers ap, 1<j<m 1< k<n mid the linear forms
Xy =apn x-_"i-ﬂ;u x3+ A Xy, =1, 2,\ “m, of the variables
Xjy Xgy s Xn. Let Mg denote the upperbound of the expression
{0, 1 X P+ w4 an| X "B for the ¥alnes of x,, X,, ... X», satisfying
the inequality (p, | % |Y*+ .. +p,,1x,,[““)“ < 1, that is

) g-—MﬂX(ZG;[X[") /(ZPMIW)C‘, (%, B 0),

Eyye K f=l

where o; and p are anﬁlh-ary but fixed positive numbers, It i3
easy to see that thg\ maximum is attained for every %[>0

Myg is a muitfpltcatwety convex fanction of the wvariables o, ¢
in the triangleNidh 0 < a <1, 0 < B <o,

We n@;:}n by this that on an arbitrary segment [ which lies
entirely \in/J, Mgz, considered as a function of a point, is multiplica-
tively ‘eonvex (§ 4.14). To show this it is sufficient to prove thaf,
fgr\wery point P{«, P) lying inside I, there exist on I, arbitrarily
<ngar P, two points Py(2;,8,) and Py(x,, B,), such that P=i, Pi+bhPy

t,>0, $,>0, {,+1, =1 and that My < Mg Mzz ®)

Y M.Rieaz [J]; Paley [2)

%y If a function y=4p(x) is not comvex, there ia an arc y=elxh
X< X < Xy, lyIng totally ahove its chord y = {x), x, < x <X, Let x, De the
largest value of the argnment x,x, < x < x,, for which y{x}— /(x) attaios 119
maximum, Then, for x0y numbers x| and x] such that x, < x! < x, <4< ¥z
the point (X, ¢ (x0)) lies above the chord joining (xf, o (x)y and (x5 {x)-
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Sincs Mu; 13 a continoous function of «, 3!), we may restrict
ourselves to the ease of [ lying entirely inside 4. We may also
suppose that ! is not paralfel o the B-axis.

‘Let ue fix o, 3, and put & = 1/a, & =1/f. Let x,, %, ..., X2 be
a wyystem of valnes for which the maximum in (1) is attained;
Y ¥ oo ¥n denotes a system of numbers which will be defined
presently, and Y, ¥V .., Yn are the corresponding values ofsthe
linear forms. The expression

@) E X e GOMC o lm+eylde, A0

considered as a function of s, attains its maximumefar' e = 0. Let

X=X+ ixY, y=y4iy". I is easy to see thab)if a > 1, the
expressicn |x 4 sy @ = {(x' + ') + (¢ weyPliiviarlabdiffprargiable
function of ¢, and its derivative atthe point s20J% R a|x|"~!{signx)y.
Hence the ratio (2) is also differentiable \and, equating its deriv-
ative at the point 0 to 0, we obtain tbQ formula

(8) B/ X; 2 Lpx xejo=R Tyl X; | {sign X)) Y/ REpalxe 1 H(sign xa)ys.
Let 0s put 3 = | x| sign xxgethénce | %=y and the deno-
minator on the right may\be written in the' form of a product
(€ prf20x P44 8, (X oy | yef@ ™M, where the numbers A, 8, > 0,
$>0, 9 +8,=1, v.ti.}{ be fixed presently. Let us represent the
coefficient of g .o(ihe right in (3) in the form |X;i—4-| ;-
“(sign Xy} ¥y App\ying Hélder’s inequality with exponents &, &, 4,
where 1/ + WhA-1/4, =1, k= b/(d — 2), we obtain from (3)

X

Bo b oy KPP 2 oy X IR |V
Qg{f""* o (S px | XalVo0)h (E a1y [er)fs
"N\

s Here o, =1/{a—1+3), a,=Af{@—143), whence {(a—1a tay=1,

\:ﬂjlat is (1 — @), + g, =a. Let us put

Y} Conbsidering separately the cases 22>0 and «=0, we prove that
the denominator in {1) is a continuous function of &, Xy..,%x; in the range
820, x,,..x, arbitrary, Hence, depoting’ the ratic in (1) by f(a, By X1y s X )y
we see that f is continuous in the range &30, B0, {5 P4 .| X, "0
Since we may plainly define Muﬁ aq the maximum of f on the ‘sphere’
(8){x, [F4..+|x,[?=1, and since f is uniformly countnucus on 5, M g s
& continuous function of e, f. [t must be remembered that, if o =19, the
denominator of (1) ie equal to Max (| xil; [ Xrlw [ %, B (§ 412).
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1= (a—~1), B, =a,, (@—1) ko= 18, ky = 1/8s,
so that 6,4-6,=1. The relation 1/ 4+1/k,=a/b gives (a=138,+3,=a/b,
that is (1 —a)f, + « B =3 From the last inequality we obtain
easily

) M < My Mg . .

The formunlae (1 — @y + aw, =a, {1 - @) 3, + ofi, = B, show

that («, B} lies on the segment { joining («,, §,) and (013, )¢ Tfor )
we take a value sutficieatly near to 1, it follows fI'O'm;'f‘{le defi-
nitions that «, and % will be near a. When k, rusd ‘from the
amallest possible value, viz. bja = o/p correspondipg to &, = oo,
to infinity, then B, varies from 3/x to 0. Since @,Iag\?ﬁ and since «,
is asvneardbuag | bEagTeag, 1 lye find, taking forky'a suitable value,
that the point (2, £,) lies on i, Then the sdirections of / and I
coineide, and the formaia (4) shows M, % be a multiplizatively
convex function on . This proves thie theorem.

O b
8.21. So far, whenever we spoke @i, the Stialties integral }.‘f Fixrd g (x)
.:. 3 IQ
we understood thig integral ig thqufielljesl-Hiemann sense. Mow we shall

introdues the Stieltjes.Lehesgne ,Iq’tegral, restrieting ourselves to the case
when ¢(x) is a non-decrsasingsfunction,

Let y=g9(x) be a f"u:iétion non-decreasing. in an interval a<x <l
and let d(y), ¢ <y <4, BeRhe inverse tunction, where ¢=¢(a), d=q (b}
If ¢ (%) takes a constan!\}alue Yo for e <Cx <8, wae assign to ¢ () any value
from the interval (CN A ¢ P —0)<Ty (g, 4 0), we put ¢ () = x, for ¥ belong-
ing to the Intervaly(pdx, — 0), ? (X0 Let f(x) =FEON=g(y I g
is integrahle oven¥e, df, we say that f is integrable with respect to v over
(e, 8} and defire ‘the integral by the formula
\O” 4 )
W LN [1dee= [ giya,
Q “ Ple)
..S{hg}; the number of stretehes of [nvariability of ¢ (v) is
the values of 2{¥ corres
he value of the integral.

A wset £ of points x is s2id to be of measure 0 with respect to ¢, if the

variation of ¢ over F i equal to 9, that is If we can cover £ by a finite or

enumerable system of intervalg {2,,6;) such that T {n.: (bj)—cP(a!.)} is arbitra-

&

at most enumerable,
ponding to thess streiches have no influence npon

_—

) For a detajled discussion we refer t

ke reader to Lebesgue's,
Lecons sur Yintégration.
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rily small. This is the same thing as to say that the get F on the x-axls is
trensiormed by the fanetion ¥ ==y (x) into a set of ordinary measure 0 on
the y-axis'). It is plain that, it E is of measure 0 with respeet to o, the lefi-
hand side of (1) is not atfected it we chenge the values of f(x) in £ The
function f mnay even be undefined in F. If Fix)=fx} outside £, we shall
not distinguish f from f,.

A funetion p(x), @ < x < b, 18 called a siep-functien if {a,4) can be bro-
kew up into a finite nember of intervals in the intarier of which ¢ {x} ia constant.
If x,x,.., %, are the points of discontinuity of a step-funetion v, then\

b
ff(x) d¢ (5)y=Zq,flx), where o =14 {x; +0)—9{x;— 0 For such iu'n;;tions
2 e A\

2 set 18 of measure 0 with respect to ¢ if it does nol contain aHy of the
points x;. It can be proved that, if ¢(x) is absoiutely conEiﬁﬁ'ﬁhs and non-
wyw dbradlibrary org.in
decreasing, the lett-hand side of (1) ia equal to f(x)v,g'(x}dx, but we ahall
a
ot require this result, except in very apecial cases sudh as g (x) = — 1/x,
As regards the applications we have 1n,‘€i§w2 the Stieltjes-Lebesgne
Integration is not reslly necegaary and wo coul&\“}brk with Lebesgue’s defini-
tion of au integral. The use of the Lebesgué-siie]ties integral has however
certain advantages, the chief of them being“that it enables us to treat series
{#{x) = a step tunction) and integrals («g’(x‘):x} in the =ame way, so that the
argumetts and results can be stated'im a conclse form.
We shall denocte by Fakd =,§’f*f(c:', #) the class of functions f(x) suech that
I/{x) " is integrable with respeet to w{x) over {a,b), and write

1ir

o\, b,
W, L] = wrx{{}if—- W, Jf a6 = { [1e7de e [

From (1) and §§ 449413, we deduce the generalized Holder and Minkowski
Tnequalities WY

i [f\g]\‘»i PAAMLFL, ML F A <TA+ DI, ro21,
where 3}?}\:: 5’-‘(‘,“5- If f is a step-funetion, then ﬂltw?[f] fa equal to the upper
bonndai . '

S3Let S denote the class of step-functions s (x), @ < x <{ ¥, whick vanishin
mfflt_; intervals where ¢ (x) is unbounded. It is plain that such intervals, if they
\e’“SL Inest be extreme intervals.

() The sei § is everywhere dense in every class LY 1 < r <o

Bupposs first that the intervals (a, #) and {p(a), ¢ (B)} are both finite, apnd
let a Ty <y < @, =1, be a subdivision of the interval (g, # such that

'} We detine the image of a point x & the interval P—0 Ly <Leix+0)
of the y-axig,
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the points a,, 4y, .., &, —1 are poivts of continuity of v Letr =¢ () —ola,_ )
we define a step-function s(x) by the following conditions: if LF10 we put
2
@ s@=2 [f@are. a <x<a, izig..
4 ':‘x'_—1
it &, =0, we put s(x}=0 for 4Gyl x<la; in any case ¢ (6)=3s (@, ) Ap-
plying Hélder's imequality, we obtain that @?r";[s; a0 = -,u,.-erlc[f; ax-_l,.q-\].
and so : '

@) M, Jsa b <®, [ fia,b], O\

a0 inequality which will be used in o moment. '\\

Now let us eonsider a sequence of subdivisions of ;htf}‘ini.ervaI (a, &)
such that Max {a;,—a;_)) tends to 0, and the BeqUENLS &), 5y %, Of the corres-
ponding furctions 5. It x, is a paint of discontinnity of g Gheq EIE RS A EAR
hoe g0 +2 () for v (x — 0=l v <7 v (a0}, where F NV =as [ {3}, Let £
be ﬂi&ﬁ'%ﬁ'ﬁ'ﬁlﬁgﬁ%ﬁw}r&% corrtaspond to the inimrﬁla ofﬂconstanc}' of
w E s at most enumerable. If ¥ corresponds to ‘e Jpeint of confinuity of ¢
and does not belong to £, then g, (¥} > g (3) pmér;?jbd thut g {y) iz the deriv-
ative, at the point ¥, of the integral of g, dt\Follows thut g,(1) -+ g (¥) for
almost every v. Hence, if f is bounded, N\

wi8) o\
j E{N — g (»irdy >0, i;:t%l‘ f;f(x) - Sy{xy rds(x)-0
w{a} LN » @

It feL"%. we write f= f{,-}—‘f".’where f! is bounded and EUNR S AU NG B
Correspondingly Splx) =5 (e D sl (x) and T

W, U~ sl ol /¢ _{i‘gm T+, PR tmr,t;:'['sgz] LW = el

for m suffisiently lappe. This shows that M, [F—5.1->0, and (i) is establish-
ed in the ~ase copsidered, T

To prove @hio'the generat case, we again write f= j' 1 f", where f'==0
outside wun i[n\’wal {a!, ¥ tompletely interjor to (a. B, f1ix) = F{x) in (a' &),
and "-Uf,. [ 95 Let P (x) be a step-function vanishing outside (a', &'} and
such thob S” [ /! — £ a',#] <5 Then

*

N :’. ETJ(‘r‘ g[f_f Fia, b« S"-“‘r,;lf’— Fra. 0]+ mir,g[f”; b < e

o

a‘n:d" thig proves the theorem in the genersl case,
\ " We shall now prove the following result, which will be required in the
next section.
Ul) Given a  finite number of functions f,.f,.., f, belonging to L™T,
Lalreloe and u namber ¢ >0, we can find step-functions b, F,, s B stch that
W, - Bl e and that, for Fuery sequence of constants ¢, ey, .., c,, we kave

W, I8, (], where F=afi—+.+c 1, R= e B e dee B, 10 h oo
k,.p b rin n''n

If the intervals {2 #) and (72} 9 (&) are both finite, this is immediate.
For if %, i 4 fuaction of type s (see {2}) corresponding to f, and if the sub-
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division 4;, ¢,. s ... i8 sufficiently dense, then ‘JR{'P[f[--—-:‘zI] < e, It the subdiv-
fsion is the same for all f, then % is a step-function of type s corresponding
to f and a0, in view of (3), S!J?k,tPihj oy ‘JJ?RP?[f] for every 15k <] e (if mzk‘?m = o,
there js nothing to prove).

To pruve (ii; in the gensral case, wa proceed as in the last stage of
the proof of (i). We write f; = f! —+ /', where f} is equal to f; in an intarval
{2, 8% and vanishes outside it, fleo it e ff+ . = "0 .

Let /i be a function of type 5 eorresponding to the function f; in the interval

(@, 8); outside {a',#) we put Fr=0. I h=¢, '+ hf 1 ..., ther we may
suppose thit & corresponds to the fupetion ' in (4!, 8), and so A
N

We o =Ty fhia, 01<M, AF5a01<B, (S0 8] (D
L L ¥ &y a\
9.22. Let us fix two intervals & <t <uy, v <¢ <%, and

two non-decreasing fanetions ¢ (f), « < f <, and $(O)X ¢ < v,
We suppose that we have an operation W waE sebirdhbigirwitho reyeny
tunction 7{#), v <t < 4,, belonging 1o a class #_ another funclion
EW)=Tif], v <t < w. The functions f and\y may even be
undefined in sets of measure 0, the formey.vﬁlh respect to o, the
latter with respect to . As regards the elass'§, we suppose that,
if fied, foed and if ¢ and ¢, avd\arbitrary constants, then
¢ fi+c,f,e X The operation 7 is to.he an additive operation, that
8 Tle, fi+c, fo] = ¢, T[f,] + 3 TLF;} for any constants c,, ¢,.

7 will be said to be of typ® (a,b) if T[f) is defined for
every fe L*%u, u,), and it N

L Wy o[ T e v] < MW, LS 1, 1),

where Af ig independ&;\\t “of f; in particular T[f]e L*¥w, v,). The
least value of M gtsfying (1) will be called the modulus of the
Operation and defadted by Mg, where @ = 1/a, =1/b. The ope-
ration T is a linéar operation in the sense of § 4.52.

It mag\happen that an operation T is defined not for all
fel=? h%enly for a get § of f everywhere dense in L™¥ (the
distancé;.:of two functions f, and f, being defined as Maglf; —f2]),
&nd that (1) is satisfied for all f¢ S. Moreover suppose that S con-
151‘11:3“Iinear combinations of its elements. Then, without changing
the'values of T{f] for f e S, the operation T may be defined by con-
tinuity in the whole space L%? in such a way that it becomes of
type (4, 5) and that, moreover,

Mg = Sup W, [ T(fIM, ] tor feS.

For it fel%9, foeS, n=12,..., W, [F a0, then W, ol fn—Ffrl >0
B8 m4n - oo, and hence, by (1), ’)J-Eb“_p[T[fm]'_ T1/a]l- 0. From
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Theorem 4.2, using the definition 9.21(1), we deduce thai the-
re is a fonction g{f), which we may denote by T[f], such
that W, JJT{f] — 7 [fall » 0. The function 7 [f] is defined outside
a set of measure 0 with respect io ¢ and is independent of the
choice of {f,}. If (1) is satisfied with f replaced by /f. it holds
for f also.

A particularly important case is the one in which S is the set
S of §9.21. N\

9.28, Let T be an operation which is simultanecusly efAype
{a,, b)) and of type (@, by, where ar=1jay, b;=1/3;, ond (he\points
Pi={w,B,) belong to the triangle (4) 0 Lo <1, 08 o WThen T
may be extended in such @ way as to become of typd™a,b) for

every (4, 3) on the segment | joining (a,,8,) and ({MJ;.‘- Moreover
the Yoot MR WM fipllcatively convex on

Soppose that § >0, 1. e. that { does m\ t\lfe on the a-axis.

Let P=P(a,B), P=t, P+, P, %?0 £+t =1. From
what we have said it follows that it 48{ anough to coumsider func-
tions belonging to the set S of § 921 “This set S is everywhere
dense in every class I°%, 1 .<la <8 cx.l) It f belongs to S, then
f=xfit %o+ ..+ % f. where f; is the characterisiic func-
tion of an interval over whtch Yhe variation of ¢ is equal to pu 153
g=TIifl &= T[f] themg= x, g+ ...+ %n gn. Since fiel™7,
fie L%, hence g,falf"'” ..gse L% gince b is contained between b
and &,, we obtain Qy Hilder’s inequality, that gie LP% We
caa therefore fmdx step -function g; such that we shall have
mlbu[gx - gr] <gy Let g “‘xlgl"l" +x,,g,,, we may alse suppose
that M, 487 <\Dlw{gl, 1< &< o0, for ail valees of X, Xp ..., X5
(§ 9.21G0). 7>

Le‘t\m Be the maximum, with regpect to the variahles x,, X3, ... s ¥a
of thé ratio (|- ...+ % Dilp, | %, |2 + ...+ pol %49 at the point
P_1al' 4 = we; since, by Minkowski's inequatity, | M, 4[g] — Mo 481!

\”d}oes not exceed (., !+ ..+ x.|) we see that

(n My &My o 1 <1 4 My oJ 21T pr’ 2x )%
Denoting by X,, Xy, ..., X»n certain linear forms of the variables
Xy X, ooy Xn, @nd by o0y, 05, .., 6, certain positive constaats, We

may represent the numerator of the last fraction in the form

N This is not true if 8= o,
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@1 X o+ o | X 19 Using Theorem 9.2, we see that ihis
fraction does not exceed

Mool N ¢ [T ¢[8’}}" W, [el o [Ty ot
"p{ima,,?if}} P |, [ = uP{ma,,p[f}} ! {sm,,,,?[f]}

where the upper bounds are taken with respect to Xy, ..., Xa
Thus the left-hand side of (1) does not exceed n—i—M;‘IEI M:fzgg N\
and, v being arbitrarily email with ¢, we obtain

O\
(2:' M"'B < Mglgl M:;:'SQ' % ‘\
From this we deduce the firat part of the theo if.%:ldljiz}ﬁ%%o{%ﬁ@})

and (25, 3,) may be any pair of points on the,-gegment [ the
inequality (2) proves the second part of the thedrem also.

It remajos to prove the theorem in Miejvase of ! lying on
the a-axis. This case has no interesting_dpplication and we con-
Sider it for the sake of completness only,” Suppose first that the
number /= ¢ (v;) — ¢ (v) is finite. Jf\the operstion T is of type
(@, o) and of type (a;, o), whera 0 1/a, = ¢ < e, = 1/a,, then
T is also of type (ay, 1/v) for every 4 > 0. Since the expression

N ¢

1/ % \\
(Tf gt Gfl!J) increaseszas v decreases to O (§ 4.15) and tends

to the essentisl upper .bfgﬁ\nd of g (with respect-to the funetion ¢),
we deduce that M, 1\% DM,,,. Hence, if fe S, g=T[f], and
i (o, 9,), @ = £ s:L—E—et‘g o, £, +£ =1, 18 a point on the segment
lotning (a,, 0) addA(ay, 7), then

& - #, . «
e 4] < Mo 03 M (/171 @)
R u

and,Jmaking v - 0, we obtain M, < My Mi:,o'

“\“To remove the condition /< oo, let (¢/,71) be an interval
Inferior to (v, 7). Coosidering the function g in (¥, v1} only,
%e have a linear operation with norm M, < My, We have

i 4 ‘f, 3 3 ' ! 5
M, < Mal o Moo <M, My, and, making 7', ¥ - 7;, We obtain
¢
M. < Mg M0

ay0-

9.24. Tt is natural to inguire how far the eonditi?n impos.ed
Ypon the point (e, B) to remain within the triangle 4 is essential
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for the truth of the theorem. The results are moslly negative.
For details we refer the reader to M. Riesz [8}

Having in view definite applications we supposed in Theo-
rem 9.2 that the coefficients of the I[inear forms X, as well &8
the variables X, were complex numbers. Similarly in Theorem 9.23
the functions f and T{f} were complex functions of a real variable.

In some cases however it is important to have those theorems for

real variables. Theorem 9.2 holds, and its proof i unaffected
if we assume that the numbers o, ¥p are real. Similarly {Thép-
om 923, which follows from Theorem 9.2 hy passages to limits,
remains true in the domain of real variables. £

X
9.25. As an applicatidn of Theorem 9.23 we shall p'rﬁv\e" the iol't_owing
theorem, stated without proof in § 4.63. Jf r<ls< 7', r'ha"l':}&\‘ (L7, L") is con

taingdinr AR DGHEYAQF BHE series

w\,/
o (N

) 15 ay+ Z (g, c08nx 4 b,sinnx), (ia) % 2 M5V e, vos nx + by sinnx),
n=] N, =i

N

and suppose that, whenever (1) is the Fou.ijier“ geries of a fnneckion _fg!_’, (13}
ie the Fourier series of a function g%‘?{f]el," We shali prove first that
g==T[f] is an operation of type (r,in the sense of § 9.£2. [t is plain thal
TIf] is au additive operation an;i: it remaios to prove ihe existence af &
conetant M such that M [gl <MIM,[f]. Let ai(x) and L,(x) depote the (G, 1

teans of the serles (Ia) afq of the series Y iy t-h; co8x -+ .. respectivels.
From the formula ¢+ 2\J

KL
N - 1 .
@ O aw=1 frxaama
\Y; 2

{5 4.64), we objm';n | onr) | <2 22 LFT B aldpde M [3ndss 29,1 F] W[ s@ that,
for fixed\r&‘,'ﬁﬁ) is an operation associatipg with evecy fel’ 2 funetion
o & L7 /Deb M, be the modulus of the operation (2). Since, by hFD"ﬂ‘"‘sis’
EI)E,[G;‘] J= bounded for every felf, the sequance {Af,} is bounded (§ 453
W‘I\i:é};’ Sup M,, we bava W, {z;]< M, [£] and, making n » =, ‘Htfgl < MWL
\"[‘hls shows that T{f}is of type (r, ). . i

Now it is easy to complete the proof la view of Theorsm 4.63(ii} e
also of type {r,r'), and from Theorem 923 we see that 7 is of tFPf {s,h
where & is any number such that 15 is contained between 1/r and 1jr’.

9.3. Proof of F. Riesz’s theorem. To prove Theoré®
9.11(a) let

b
) = [ fiheDrdt, n=1,2,..

N\
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be the n-ih Fourier coefficient of f (§ 1.31). Then

= & 4
®  Fiat< [Ifora lal<mfIf@la

where the first inequality is Bessel’s inequality and the second
follows from (1) and the inequality [g.| <M. Let us put p(x)=x,
and let ¢ (x)=[x] for x>0, ¢ (x) =0 elsewhere. If ¢ (x) is efual
to ¢, for x=p and is arbitrary elsewhere, the inequalit{es (2)
may be written A\

Vo ] < Mol fl, Dogle] < MBI
50 that the operation ¢ (x)= T[f] is of types 2;]'2é‘rand (1, o).
‘In view of Theorem 9.23, T is also of type @y, Whtre a1,
F=3/1~0), $<a<g 1. Since My, < LM, << M, we find,
using Theorem 8.23 again, that ':j\\'

&
La—Y3 {1~ 2} e .y
Moo < MG OT0 MESESE < et < e,

Hence M, o[c] < M2 3, Icloand this is just Theorem 9.11(a).
To prove Theorem 9‘11(1)')" we argue similarly, starting from.

the inequalities N

& N\ e -
IVQ@QEMRUWQ@QM

Where f js the fumction the existence of which is assured by the
Riesz-Fisehqx’\theorem (§ 4.21(1)). The details may be left to
the readeps \/

’“.\"’We complete the above proof by a few general remarks.
In th.c'\first place we observe that the apparatus of the Stieltjes-
Lgﬁqégue integral was not really necessary in the proof of Theo-
~Jem 9.11(a). For, if we put e (x)=¢; for n—1 L x<n, n=12, ..,
the inequalitios 9.3(2) may be writen M} <M, [f], We[e] < MM S,
where the integrals are ordinary Lebesgue integrals, and we may
gpply Theorem 9.23 in the case p{x)=x. $(x)=x. This course
i slightly less simple in the case of Theorem 9.11(b); but, as we
know, both parts of Theorem 9.11 can easily be deduced from
each other (see also § 9.9.1).
The proof of F. Riesz’s Theorem ¢an be made more elemeni-
ary by basing it on Theorem 9.2 instead of Theorem 9.23. But
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the application of the latter theorem has two advantages. The
first of them is that it clearly shows the proper place of Theorem
8.11, which turms onf to be not a generalization but a eensequence
of the Riesz-Fischer theorem. Besides, Thearem 9.25 is of funda-
mental character and may be applied, so to spesk. automatically
in many cases where an application of Theorem 3.2 would require
certain calculations, which would amount substaniiaily to a proof™\
of Theorem 9.28.

We also observe that in § 0.3 we applied the Bessel 1nequ—
ality and the Riesz-Fischer theorem for a complex syslem {9},
whereas the proofs given in §§ 1.6, 4.21 bear on the ‘case of
real y,. The reader will have mo difficuliy in ,adaphng_, ihose
proofs to_the case %foc(gqglex Pan S

www.dbrau

9.4. Theorems of Paley. The Haustff—Young theorems
are net the only results which connect Ke type of integrahility
of a functien with the exponent of convedgence of its coefficients.
Further resulis in this direction ha%e been obtained by Hardy
and Littlewood. The simplest way to them seems to lead through
theorems of Paley which partify generalize the Hardy-Littlewood
theorems and bear on geeral orthogonal and normal systems of
uniformly bounded functions.

Given any sequench of complex mumbers &, &, ... tending
to 0, we denote b Q "y, ... the sequence l¢, ), le k.. rearranged
in descending order of magnitude. If several lc,,‘ are equal, then
there are correSpondmg repetitions in the ch e put

\ r ur
]ZN o2 } = R,fe], ].4.; o - 2} = %,[¢7].

n-,?
Let ol(x\), $.0x), ... be a system of functions which are orthogonal,
normal, and uniformiy bounded (1¢.|-< M, n=1,2,..) jn an i
te:rwil {a, b). Writing W[f] = W/, a, b}, Paley’s theorems may be
{stated as follows .
() If. for a sequence of numbers ¢, c,, ..., the expression ¥C’]

is finite, there is a function f e L9 suck that c, is the Fourier coef-
Jficient of [ with respect (6 ¢o,n=1,2,.., and

(1) M f1 < Ag Bl
where A, depends only on § and M,

D Paley [4).
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(i) if felr, and if ¢, ey, ... are the Fourier coefficients of f
with respect ic {p,), then B¢l < oo and

@ Ble] < Ap MWl f],
where Ay, depends only on p and M.

The reason why we introduced the starred sequence {cn}. b,
comes clear from the following considerations. Let oy oy o, B BN
be two sequences of non-negative numbers, and let S be the.sum
@b+ a5, 4 .5 S may also be infinite. We suppose that){a,} is
either nen-increasing or non-decreasing. Rearrangfr\zg.}‘{b,,} in all
possible mauners, we obtain for 8 the largest value fphert {a,) and
el vary in the same sense, i. e. it they 3¢ HitheteH b o Honoide p-
asing or both nen-decreasing; S is @ minimum When {ar} and {8,
vary in opposite senses. To fix ideas we assume that 2, > @, >...
To prove the first part of the propositig(w.e observe that, if e, g.
@ > a, and &, < b,, then, replacing oy - a. b, by a;, &, + a, by, we
increase S by (a,—a,) (4, — b,) > 0. Sinlilarly we prove the second
part. "j:;

Hence, considering all possthle rearrangements of {|c.[}, we
see that V,fr] is a minimum when {l €z} is arranged in descend-
ing order of magnitude,{'With this arrangement the expression
Wfe] attains its maxiaram, It follows that, if (1) and (2) are -trae,
the inequalities whith™ we obtain by replacing B,[cl, ¥,[c] by
Blc], B,le), hold a\fortiori. On the other hand, since the order of
the fanctions %;Within the sequence {y.) is irrelevant, we may
change this drder, if necessary, and suppose from the very begin-
nitg that L= |c,|. 1t is therefore sufficient to prove (1) and (2)
with ¢, “replaced by {¢n}, and in the subsequent proof we shail
write 8. ! instead of ¢,

m:'§’9.401. Since, by Holder's inequality,
“ . ’
\ el = Iie, 1% pHa—2g p—ta—2Ng (] g5 |8 no-2)%0 (X p—t)le—2)g,

we see that, under the hypothesis of Theorem 9.4(i), the num-
bers ¢, are the Fourier coefficients, with respect to {¢.}, of a func-
ton f(x)el® Let su(x) be the n-th partial sum of the series
19X}, 3,()+... It is sufficient to prove that My{s,¥.q] < A, B,[c),

=1,2, .., for, since W,[f— 5,5 _4]>0, there is a sequence of
integers {N;} such that §%_,(x) converges almost everywhere to
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F¢x) (§ 42). and an application of Fatous lernma to the last
inequality givea 9.4(1).

a2 kg
Let C, = X lealtmi?, @, = > tm¥m wn=1,2, ..,a0d
macott—1 mgt

iet v p, We begin by proving that

Q.
O\
where B, is independeat of {c:). For, since j&n. < M the Teft-
hand side of (1) does not exceed \

v
) f | Dy, D, |9 dx < By C:' Clra7 W) g g,
[

0":
L 3

Max {| @, [ | &, |"?_2}fj¢ 2 dx \q\

www.dbraulibrary.org.in

QM““E("’E—]! Cm l} (g\:l | €n [}\ ( g H.I'L L€ l‘}-

p—'2'f—'1
Writing {cm | = | € | mbe—Di0. m—{q—2§ ]c,. | =16y mle—D7 - - p=lg-0e,
| cp 2= | ¢, 2 pRle—2Vig - p~2g-2tg applymg Holders inequalities so &8
to introduce the sums C,, C,,, anﬁ observing that

2371 ok \ N 1 . e dx
m < | x% d, o 4.2
megt—1 f K Oi\ % Z lp =< 22y 1"‘2

we easily obtain thg\mequai'.ty (1) with B, not exceeding
M= a2 (g — 1YAlo-1) (g — 1)1 (0—920 < M9 g5,
AN
Now,.js(u{jposing that ¢ 3> 4 is an integer, we have
\s

L AN 'S \ N
sﬁrsz l=f|Eedrc 3 3 ..?f|cz>y“.. | dx.
V=

V '

& r=1 ¥y=i vq

~tng 0, “bvql—l@vfi%,}@ D) (B, D, )Py P
\here the number of bracketed factors is Q= g-q {g—1), and app-

lying Holder's inequality with the expoments Q (§ 4.141) WO
obtain

z q & 1Q
[ i (I')v; qb‘v: q)\-'q' dx j i (f-’ u’"’ dx} e

!/21 p [

BqHC e c e gm0 g f] G, {H“’ 914 ww}

i‘<} =1
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Here the upper suffix (/) indicates that the factor j =1 (which,
by the way, is equal to 1) is omitted. Substituting this in the
right-hand side of the inequality for W{[s,¥ ], and applying Héi-
der’s inequaiity with the exponents ¢, we obtain

7 N A 7 1) Ye
9]33[6’2”...1] = Bq II{ 2 e 2 C\,_ n 2-]“].‘-\:} ff""(‘s“”}
=1 1y=1 Vel fi=t
Consider the multiple sum in carly brackets. Summiug\first

with respeet to v, ¥, ... , Yic1, Vif1, o, Y. and then with respeet to'v,
we obtain that the sum considered does not exceed O

il oo lq—-l AN
(2 C?){ 2 2"“1-’2“’_”[ , aud 8o N\ 7
Y=o www_db‘lﬁdlibrary.org.in
[ ) O g% 3
ﬁﬁj[sz‘v—il < Bg{ ch} { 2 2= v;.-’!(q—li} 5 Ag 2‘3[619
=1 Vm o\ ),
where A7 = B,{X2-1%2—Dy—1 Thug, th, theorem is proved for
4=4,5,...; and it is plainly troe algb for ¢4 = 2.
To prove the theorem in thej.gé'_neral case we observe that
the inequality 9.4(1) may be wriften

w=1

WL <AED (en |y,

and that f(¢) = X ne, gu(f)/n is obtained by a linear transforma-
tion from the numibbrs nc,. Thus, arguing as in'§ 9.3, we may
Interpolate by mebns of Theorem 9.23, and Theorem 9.4(i) is esta-
blished complet\’él'y:

9.402.3'\:Tfleorem 9.4(ii) may be obtained by au argument
similar tothat of § 9.121, We put 7’ = ¢, fix an integer N>>0,
and dedote by g(x) a sum dy 9. ()+ & 99+ - + v oalx),
wherg\the numbers d,,d,, ..., dx will be defined in a moment. Then

R Yy b4 N N _
U . [ fadx = Z—l Cn =n'§l £ no=Dip - &, ma=s,

Let us apply Homers inequality, with the exponents 7 and ¢, to the
last sum. ¢ sign d, = signea, (€. /P72 =|dn |2 #2-%, the inequality
fIEgenerates into equality (§ 4.12); hence, applying Holder’s inequal-
1ty to the integrat in (1), we obtain

(51 o) (2l m)  <BAN Ble)

A==l H=1
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In virtue of 9.4(1), the second factor on the right does not exceed
Ag By[d], so that
N b
Sicarw=r < A [ 1 firax.
=1 o
Making N - o we obtain the inequality 9.4(2) with A; = A,

The reader will easily convince himself that A, < C M= Db\
and so A, < MEFPra, where 2, depends only on ¢, and otp\egly
on p. o\

9.41. it is an interesting fact that Paley’s theorems contam the
theorems of F. Riesz as special eases, although m F siightly
less precise form: into the right-hand sides oF\ghP Lnequalltles
Mol £, GHCmENylehaiple) < ME-P? M 7] \witvshell have to in-
troduce a numerical factor %, depending om)p. In view of the
Jast remark of 9.402 it is sufficient to le\g.\thdt

1) B bt << ve Ngled, q‘pk’l > e Hplel,

where 1; depends only on 4, ana :rp ooly on p. We shall prove
the first of these mequahtleswnly, the proof of the second is
similar.

First of all we obse\ & that if x,y, .. are nop-negative num=
bers, then (x+y+ .Y, EW + v + .. for 0<r <1, and (x+y-+..J'>
=X +y4. for ?\}1 The first of these inegualities kas al-
ready been estabhshed in the case of two terms (§ 4.13), and ip
the general ea&é; the proof follows by induction; the second -

eqoality mg}g{h’e chtained in the same way. Now
&

\ = el
o\ 27
O Yawr=3 ¥ oty
&3 n=1t y==0 V)
NN n=3
O\
\ ™ . aF an-1
) < W 2: y 201 = 992 z: (6 21
= =

i [ gt T, * >
< 20—2(2%3 2“) <27 (c, +
ES)

g 91

* . -

E?."l Pig l) i
w=}

¥

gl - f—1
< 2 3(61-1- DI N ) £ 2 (2 > c;f’) = 2%t NG leh
. A=

w=1 P -1

and the first inequality (1) is established.
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This result might suggest that, perhaps, the theorems of
Paley and those of F. Riesz are, roughly speaking, equivalent,
But this is not so. For if we put e. g. 9.(x) = cos nx, (g, &) = (0, %),
g=n"log ‘Ya+1), £=1,2,.., then H,[c] <eo, and so, by The-
orem 9.4(i), the function f(x)=c, cos X+ ¢; cos 2x + ... belongs
to L', Since Mu[c] = oo, this result cannot be obtained from
Theorem: $.11(b). ° \

8.42. Given a real function f(x), 2 <x <5, we shall denote
by E{(f>> ) the set of poinis where f(x)>y. The funglions f
and v will be called equimeasurable functions if | E (f>y) | ‘}E(cp>y)|
for every y%. Bach of these functions may be thm,tght of as
obtained from the other by a sort of reiﬁ) gﬂﬂent’ (}_f I_the
argument x, although we ahould find some e tried
to define this rearrangement precisely. It is piam that if one of
two functions egquimeasurable in the interval (a,b) is integrable,
s0 is the other and their integrals over((&,/3) are equal

For every measurable function ¥{x) defined in a finite inter-
val @< x < b, there is a function ¥(x), a < x < b, equimeasur-
able with f(x) and non-increasiag® For let m (y} = | E(f>y}| and
suppose for simplicity that @.5%0; then f(x) may be defined as
the functien inverse to m (9 The function /™ is defined uniquely
except at its points of discontinuity. To fix ideas we may sup-
pose that f*(x+0) =y\x). Similarly there is a function f(¥
equimeasurable w l\f{x) and non-decreasing.

We shall gequire the following lemma.

ifr (x),’{é'"non-negaﬂw, then, for any fanction g (x) whick
IS non-negagive and non-mcreasing, we have

(1)~\:“§" fbgf dx < f gfdx < fgf dx.

. Fxrst of all we observe that, if fu(x) tends almost everywhere
' ‘10 f{x) then fi(x} >f7(x), fulx)~f.(x). except at a set of points
which is at most enumerable. This follows from the fact that,
for every v, |E (f. > y)i +!E(f> ) |. Secondly, if {/} is monotonie
and tends to a limit f(x}, and if (1) is true for fo, 7 =1,2,.
it is true alse for f. This follows from the preceding remar.k
and from Lebesgue’s theorem on the integration of monotonic

Y This notion hae been introduced by F. Riesz [8)
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sequences. Now (1) is certainly true if (g, 5) can be broken up
into a number of intervals of equal iength in esch of which ¥,
and so also f* and f, is constant, for then ihe integrals (1)
reduce to sums (§ 94). Since, starting with such functions, we
may, by monstonic passages to limits, ohtain any measurable fune-
tion f (%)Y (more precisely, a function equivalent in f(x)) the ing_
equalities (1) are true in the general case.

9.48. Now we shall show that, it we invert the roleagot F(x)
and {c.} in Theorems 94, we obtain theorems which ;f@\equﬂlly
true. Tt will simplify the proofs slightly if we suppese that the
interval (a, &) is finite, but the proofs in the generdhdase undergo
but little change. We suppose for simplicity ﬂga{\(’a, &) is of the
?0{1,"\1#\ﬂ,?ag}'aul?ﬁaf?y_ﬂﬁgihau denote the funsfion’ which is non-
tncreasing and equimeasurable with ifls agg\write

A Lir “':lk ;r?)
u,[f]:L[ £l xr—zdx}, WL [ for d.x} .
.“' 0
It the functions o, satisfy the sam@“econditions as hefore, then

O If W[ is finite and}'s‘f :;:,, is the Fourier cocjficient of f

With respect to ¢, then RAeles finite ana
(1) i i”!ﬁq[":] < Ag Ug[f7,
where A; depends o‘rz)}s\on g and M,

(i) If. for @ Sequence {ca), we have Molc] < co, the numbers tx
are the Foarfz‘c\oeffmmtx of a function f such that
2) \\’ Lf] < Ap Nyle],
where, A},\= Ap.
“'\:’\'Since the proofs follow the same lines as those of Theo-

oms 9.4, we shall condenge some parts. We begin by prov-
ing (1) in a weaker form, with £ replaced by 7| on the right.

) Sees 6. g. Hobg on, Theory of Junctions, 2, 376. .
) In the case (a, 8} = {— o=, f- ) it i sonvenient to define f ae a fune-
tion which is equimeasurable with {fl, even, and nog-jnereasing in (hoh

A v B ) . . Ir
and to put U [f] = f AT Jiacl ™
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The inequsalily is true for ¢=2, and so, if we prove it for
§=4,5,.., an application of Theorem 9.23 vields the result for
general 4. Let f(x} be the function equal to F(x) in the interval
(h2~", k2°1*y and to O elsewhere, v=1,2,.., and let ¢, be the

Fourier coefficient of f, with respect to g, 80 that ¢, = ¢!+ 2 4-
We fix an iz*vteger N2> 0 and observe that
N\

f f—n|g_2|cn+crl+ 2 2 ZF .- }'OI.\:\

Yi=1 vg=1 a=] /
N\

and that 2 lend el ] <
n=l1

H { Sl

dbradlib
where Q =40 (q — 1) Now we prove th\;r"’w I‘i dbrary . org.in

(3) Z ffn. cﬂ}qﬂ < B, ,’]}L- T 2— i.m-w
ne=]1 \

where B < M2 8, with B, depending only on ¢, and 7, equal to

M\ fe -y £2, A2, For the left—hand side of (3) is equal to

hp v

';f 3
Zj’:iff% Wfffﬂan <
e Ay
p.+1' P +1 o "!—'9-}-1
< o2 | fzma;)'”( f |f[dx)m 2,2: J o
T

and, by Bessels mequallty, the last factor on the right does not
exceed I i’)f A9, B2V, Writing | f| = | f| 0~ x—te—2ia,
|/ |"‘I (=27 x—e—2, and applying Holder's inequalities, we
°bta“3‘{\3‘) Hence, argming as in § 9,401, we obtain the inequality

1y
ET‘—"-I“) < A 1[f), and (3} follows on making N tend to co.

\ So far we have proved (1) with /* replaced by |f|. To obtain
the exact inequality (1) let us assume first that f is a step-fune-
tion. Rearranging the order of the intervals where f is constant,
which amounts to an one-to-one transformation of the interval
(0, &) into"itself, we transform |f| into f*. At the same time f(x)
is transformed into a function % (x), and the functions ¢. are trans-
formed into functions $s, which again form an orthogomal and
normal system. Since the Fourier coefficient of f with respect
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0 7, is equal to that of & with respect to ¢, (1} follows, in our
ease, from the weaker inequality previously established.

To prove (1) in the general case, let {fi} bs a sequence of
functions for each of which (1) is true, so that

A k
@ Ylckie < AL f i xo2dx,
A==

where N2> 0 13 f1xed f» is non-increasing and equimeaspfahle
with | fzl, and ¢t ¢5. ... are the Fourier coefficients of fg\ Sitice
any bounded f is the limit of a uniformly bounded and almost
everywhere convergent sequence {f:} of step- -functipds, and since
c,.—»cﬂ,fk(x) > x) as k-oco, we may replace &% by ¢/ in
). Fo.iffe put fk(x) FECIIN S R GRS and
fk(“ﬁww Jblf T}i}}ff:t&jskg Hence again ¢ - ¢n, ,Q;(x} £ Fapax) = 0,
and, since the fi are bounded, (4) is true .fg} 7. The inequality (1)
follows on making N - co,

To prove (2) let us fix N>0 and put Sfe=6,9 4 o + tuw
We verify that
3

1,0f3] = Sup j firg dxd ror all g0 with Ug] <

it is even sufficient to bqstrlct £ to the domam of step~functlons
+8 3}

A moment's consldeh\a}hon shows that, then, ffug dx = ff\"f dx,

where the absg'lule value of ithe function 'r(x}—-"(x g N)is

equlmeasuralée with g. Denoting the Fourier coefficients of ¥
by d, we\]}ave

(Ffr‘.; W] = Supff;v'f dx = Sup Z £n d;. -

g §

\‘:

g f N
< Sup (2_.7 | € !") (Z i de I"’) < Sup Tylc] 4y Uply'] =
= Sup Ay MWlcl Bfe'l < Sup Ay NJe] Up[g] < Ap Role):

Since Eltp[cjéco involves ‘:‘Jig[c]< oo, there js a sequence
{fm{x)} which converges almost everywhere to f(x), aand 80
fufx) = f'(x) for almost every x. Comparing the extreme lerm8

of (5) and putting N =N, we obtain (2) by an application of
Fatow's lemma,
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The reader will eastly convince himself that A, < M-,
and Ap <l MOP¥ ap, where «y depends only on ¢, and «, only on p.

9.5. Theorems of Hardy and Littlewood !). The the-
orems established in the previous paragraph are extensions to
general orthogonal systems of results which had been obtsined
previcusly for the system 1, e, e— ¥ by Hardy ard Little-
wood. This special case, however, is of independent interest, for
the results may be stated in a different form and give the solu*.
tion of an interesling problem. It will be comvenient to changa
the notation of the previous paragraph shghtly

Given 4 Sequence ,, 'y, €y, Ca, C—y, Oy, .. 184 G20 c_l > €.
be the seguence |¢y, |€,), [c—y|, ... arranged in JﬂFamﬁ?ﬁFﬁP?‘cﬁ% 9};—
der of magnitude. Similarly, given a function &)/ = < x < x,
we shall denote by f*(x), — % < x < 7, the functign which is equi-
measurzbls with (f(x); and even; for 0 T %, f*(x) may be
defined 2z the function inverss to %! E(|f|>y}|, We puat

1r

() B,le] = {Z|ca|f(|m+nr—==}” 171 - e

If, for a moment, we denot‘e ‘the sequence ¢, 1, ¢y, c3, .. by
d, d;, d3,..., then the ratip" Ec,, (rl+1y- ?!E di w2 is contained

between two positive }xhnbers depending exclusively on r. Thence
we see that Theogpelg® 9.4 remain true for the system 1, e, ¢,
it B, is given by ‘the first formula (1). Similarly Theorems 943
are true for/jthis system if the interval (0, R} is replaced by
{(~ =, ®) and 8, is defined by the second formula (1).

We(%low that. a necessary and sufficient condition that
a sequence ¢,, ¢, ¢y, .. should be that of Foeurier coefficients of
ap, £ &1 is that I !c,|?< co, This condition bears on the moduli
o the ¢, so that a necessary and sufficient condition that the
numbers ¢,, ¢,, ¢, ... should be, for every variation of their arg-
uments, the Fourier coefficients of an fef? is again Z{c, [?<lco.
We ask whether anything similar is true for other classes L7 The
Answer is negative: there can be no such condition for r == 2.

For let us consider the series
—_——

) Hardy and Littlewood [10], [15]; ase alac Gabriel [t], Mul-
hollang [q].
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(2) 2 =% e, ZErmeem  p<aay,
A= =
If « = %/,, the first series belongs to L7 if ¢ < 4 onty (§ 5.7.8), while
the second belongs, for a special sequence of gigns, to every L2
(8§ 5.6, 5.61) =0 that two functions, one of which helongs to i7
while the other does not, may have the same cenio IE @ =1y, 4he
first series in (2) belengs to 77 tor P <*,, while the second, néed
not’be a Fourier series. D

"N
These facts suggest a change in the problem. Now-tve shall
vary not only the arguments of the ¢ but also théir\order, and
we ask when the new sequences will be thoge ef{Faurier coeffi-
cients, with respect to the system 1, e, e~ NCNof functions be-
longing dlorda)ibrary.org.in

AY;
) A necessary and safficient conditiop that the . should be,

for every variation of thelr arguments’ arrangement, the Four-
fer coefficients of a function fe L4, i Bhat B(c] < oo; and then
@) Mol £] <y Bole*]

Jor every suck f, where A dééen.ds on ¢ only,

G} A necessary atd, sufficient condition that the c, should
be, for some variation) of their arguments and arrangement, the
Fourier coefficients 8 an felr is that B[c*] < co; and then

@ D7 Bl < 4]

for every sich 7, where A, depends on p only.
F?Qihe proof we shall require the following lemmas:

950t ) if G250, q necessary and sufficient con-
Aifion that the function €(¥) = I aycos nx should belong to L,
Ne > 1, is that the expression S, =X af i—2 should be finite

(ily The resalt remains true for sine series.

Let G(x) denote the integral of g, and H{x) the integral
of [gi, over (0,x); let 4, - @ +ay+.. +un By B, B, .. W
shall denote positive humbers which are either absolute col-
stants or depend on r only. 1f & € L', the series defining g is € [g}
{this is a corollary of the following proposition which will be
established in Chapter Xi: If a trigonometrical series CONnVerges,
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except at & finite number of poinis, io an iniegrable function f,
the series is &[f]), and so

G(x)=fg(f) df?iiﬁsinnx, G(—E):

=1 N
Shax 4 a mr__ "=la, & mr
= Rm _ Ymda min si D—> Z Um  Zmtn sin — >
PdLy; m—+n  m42n R omm\m omd-n rz'\
8] /g P 223} g
}Bl (_‘m—‘ﬂ)>32 _m>Baam N
IS+t \ m-n (nfalL P ¢ \\
.\¢\
=a x
Zanf—z/deur—sGr( ) BEHrEHr‘g )<
= n Wi db]"aL{II hry.org.in

s 4:;:1 -j; {H (x)} Bs H(x)idx < B, f|f|r dx

(§ 417, 5=0) and the necessity of the\cOndltlon in (i) is establi-
shed. To shew that the condition? i‘sﬂsufﬁment we observe that

| n N N \ - _—
g <| Da, +’}~;’ D, a, cos vx‘ An -|-—.
s y=1 g KNS v=n41

& 1.22), and so (g (0| < By A, if s+ 1) < x < =/n. Hence

]
1 flg"d{:.Z' |/ Igl’dx<BsZAnn—2
= riin+1)
and it remain® o show that the last series converges whenever
Sr < oo, Lei:f{x) denote the function which is equal fo a, for
n-1g x“<}, n=1,2,.., and let F(x) be the integral of f over (0, %),
S: <&§ lmphes that fr(x) x—2e L(0,cc), and so, by Theorem
4. 17 With s = r — 2 {F{x)/x} x 2= f{x) x 2 ¢ L (0, =o). Bince the
lﬂ\ﬁt relation is equwalent to the convergence of the series
'“3}"‘%“ ! lemma (i) follows. Lemma (i) may be obtained by
a similar argument, or, still simpler, may be dedueced from (i)
using Theorem 7.21.

9.502. Now we are in a position to prove Thesrems 9.5.
That the condition of Theorem 9.6(i) is sufficient follows from
Theorem 9.4(1), whence we also deduce the inequality 95(3) To
Prove that the condition is necessary, consider the series S ¢y in
and I 7, e, If both of them belong to L9, so does their sum
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e oo
Y (et e =13 IC; + Z‘l% (cn+ €} cOB nx],
H=—o= . R=

asd from § 9.501(i) we obtain L fc") < mo.

Theorem 9.4(ii}) shows that the condition of Theorem 9.5{iD)
is necessary. That it is also sufficient follows from the fact that
the series 2. ¢y 27 belongs to L7 if "] < oo {§ 9.501). ~

B —on

9.51 ). The following two theorems, in which we comsider
‘rearrangements’ not of the Fourier coefficients but'o;t"\the va
lues the function, are, in a seuse, reciprocals of Thegorgms 9.5,

(i} A necessary and sufficient condition that :9%,;{61 should be
Finite, foubeddiibbay viorgrim the same f(x), is hEH [ should be
Jinite, and then

@ Wole] < Ay Wl Ly

~ .

(i} A necessary and sufficient ¢ongdition that Nlci should be
finite for some f(x) with a given\fAx), is that W f*] should be
finite, and then N

@ ULFIEVA, W],

The proofs of (i) and (i) ave similar io those of Theorems
9.5 and are even a lilfles easier since f*(x}, unlike cr, I8 & SYM
meirical funection of{"ts’argument. The only thing we need is the
following lemma:‘i}\a function g (x), | x| < =, is non-negative, evet,
and decreases jg\{0,), and if a, are the cosine coefficients of &
then a necessr$/and sufficient condition that Nfa]l< o, r>1 5
that the flinetion g'(x)x~* should be Integrable. We shall only
sketch\ #h¢ “proof which runs on the same line as in § 9.501.
Denqﬁ% by G (x) the integral of g over (0, £), we shall show that
N T m
\\ 3) |@n| <2 G(;), Ar2 Bl g (“n—),
where A,=a,'+|a, )+ ..+ a,]. The first inequality follows
from the formula

E] -

X Qn =_[g (x) cos nxdx + fg (%) cos nx dx,
L] =i

L=

% Hardy and Littlewood [10),[15).
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where the last term on the right is, by the second mean-valye
theorem, less than g(z/n)-(2/n)§0(::/n) in abgolute value. To prove
the second inequality we notice that %ao+a,+...+a,,_1+§an is
equal to

2 snnt 2T ey gttam ] ,
—Jey = x> 21 0O gldmym 1o
=a/g<'2tgg-r zﬂ/[ztg,}r YT i
O\

e
N

riin
) . = =
= B, a[ g; )sm nt dt > B, g(g;) 2B, g (:)

N
&

Now it is sufficient to observe that, if g’x*‘-{.m Tategrable,
80 is (7{x) <=2, hence £ G(x/n) < oo, and, in viewreh s fixst inequr
ality in (3), ¥,[a] <co. Conversely, it R,]a]< co; thén X {A,/n} < oo,
(this is an easy consequence of Theorem 4.1%with 5 = 0) and the
second inequality in (3) gives En—’g'(xjnlg&\c Since g (x) is noa-

Increasing we obtain that gr{x) w2 isjﬁx%e‘g‘rable.

$.6. Banach’s theorems ,q.ﬂ “lJacanary coefficients !,
We know that a necessary copdition for a sequence {a,, 5.} to
be that of the Fourier coeffi¢ients of an integrable function f,
18 @[ 4-18,150. It a, b, dre to be the Fourier coefficients of
& continuous f, the serieg® a’-- b + o+ & 4 ... must converge.
The converse proposit{ons are obviously false, but we will prove
that, at least for somi¢\values of 7, the Fourier coefficients of in-
tegrable, or continuous, functions may be prescribed, roughly
Speaking, arbitfgrily.

(W) LetX{iy be any sequence of positive integers suck that
Bifn, RN, =1, 2., and let {x,y} be an arbitrary sequ-
ence sughthat (2} + 3+ (53 + y3) + ... <co. Then there exists a
rong{@épas { with Fourier coefficlents an, bx satisfving the equations
S Ky by =y, =1, .

3

(i) If {n:} satisfies the same conditions as above and if
¥i>0, y: >0, there exists an integrable f such that g, = X bay = 1,
i=1,2 ..

We begin the proof of (i) by two remarks.

 Banach [1], Szidor [3],[4} Verbluneky [2].
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(a) It is sufficient to prove the existence of a bounded f
with the prescribed coefficients. For let {=) be a convex
gequence tending to 0 and such that the series with terms
(xf + y})/en, converges?). If we can find 2 bounded funetion
g ~%a,+(a,cos x 44, sin x)+..., such that a,, = xje,, by, = Yifen,,

then {a, ¢4 (9, cosx + b sinx) e, + ... is the Fourier series of a
continuous function (§ 4.65), and the terms with indices n; in this
series are (x; cos n;x -+ y; sin 1 X). A

A\

(b) It is sufficient io prove that, for svery integet\'"k>0,
there exists a function fi(x) ~ %« + (&} cos x + &) sin &} ¥ ..., such
that aﬁi = Xi, bﬁ, =¥, 1<{i< k, and that ifk(x}'.g:fc,"where Cis
a constant independent of % In fact, let us assuafefas we may, that
WQW‘QHPET?{‘?I&%HHH Fi(x) be the integr'ﬂi"ﬂf fr over (0, x)
Since the f. are uniformly bounded, the functions F, are uniforamly
continuous and we may find a subsequence {F,} convergisg
uniformly to an F(x)cLip 1. The Faurier cosfficients of F are
limits of the corresponding Fourier'cdeificients of Fn, 88 k-9
and so the bounded function f (&% F'(x) has the prescribed coef-
ficients for all the indices AN

Now we shall prove alffumber of lemmas,

8.60L. If ne i /m3 ) > 1, and if the series S {a}+ b3) converg:
es, then \\’
(1) ~ : 7 kg; (2rcos np x + by sin 1y X}

MY

is the Foug‘ts‘{:: series of a function f{x) belonging to every class L, and
.”\‘¢
\.. 4 1 i lir gl Yy
A { frered < ] Saea)
e o

k=1
here A, , depends only on r and ).

) 4

N This lemma will be required only in the case r =4, but the
proof does not become simpler by considering any special ‘jahw
of r. Since the left-hand side of (2), multiplied by 27 1s;ll
increasing function of r (§ 4.15), it js sufficient to consider the

. helt
'} We may find first a saquence {<,}, ¢, >0, tending to 0 and !

majorise it by a convex {c,}-
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values 7 == 24, £=1, 2, .. Suppose first that the series (1) converges
absolutely, and let F(2) =X cyz" be the power series the roeal
part of which, for z =e%, is (1). Then

Fiz) =} d, 2,
==

where ¢, = 0 if v is not of the form
O\

(B) oy fty, 4- 0y 7ty +..oy with w1 >, >0, &)+ aghh=h,

Now we cbserve that, if X is sufficiently large, l}}g,?the’n every
positive integer can be represented at mosmdbed}liﬁhmﬁomg(ﬁi.
For otherwise we should have an equation B, n, 42832 ... = 0, where
B> ng >, 0B <A, 8,540, and so alsg < A (s, + e, + ...),
P<hG-t421-24 ), which is impossibleo\i‘f;) > =h+ 1

burd P e
By Parseval's theorem, lf{ FMeir)|? dx =2 | d, 1%, where, if v

2y N =0

is of the form (3), N
R S N S P R D3 Ty Py L) PR
ala,t,, ™ & PAN alal ..
N\ ,
h et s
Hence, if 4 lo,“a—f,lF(ef")P" < Al ( 2l m’) , and since we have
3 27?0 E=1

I < F (ef'{)fl;\ck = ay — iby, the ipequality (2) follows with
APy = o O

Tosremove the condition concerning the absolute convergence
of (1):f";;‘e apply (2) to the function f (7, x)=X (4 co8 #x X-+-Dxsin 713 X) £
A0d"then make r - 1.
\, ) To prove (2) for general »>>1, we break up (1) into a finite
bumber, say s, of series, for each of which the number X is 2> £ 1.
Correspondingly f=f+fi+..+fs Bince

k3

o th
Man [£] < (2k!)”**{2 (a§+bi)} o Mo [f] < Ml fi),

Ve obtain (2) with 4, = s (2A)34

3k
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9.602. Under the conditions of the preceding lemma,

m s
1) %f.jf(x)i dx > B, {g (ak -+ bl‘i)} ,

where B, depends only on X, N
If /. denotes the left-hand side of 9.601(2) then, by Héider's
inequality, J, < /A* /" and so VAR T (N
To prove (1) we apply the preceding lemma ap& ohserve
that A, ; = 1.

S "~

9.603. Let n,1,, ...,1 ... be the sequencanf‘ Theorem 9.6(i).
Lewnp dbvanibeiegerrgin 0 and let B denste’he set of all peri-

odic functions f, |f|< 1. We put Y,
= i '\:’
1
x,—=~;~ffcoan,-xdx, y;:lffsinn;xdx, 1k
a t- o

"

and denote by E the set, mtuiﬁed in the 2k-dimensional space,
of points P(x,, v, ..., xk,yk) “obtained in this way. This set is
convex, that is, if two points P,, P, belong to it, so does every
point tP-+(1—-£) P, 0.K¥ < 1, of the segment P, P,. An argument
similar to that u%b{m § 96(b) shows that £ is closed. We will
now prove the following lemma.

E contat(xs a whole ‘sphere’ xi+ vi+ .. +xi+ yi < R, where
R =Ry is, (ﬁonsmrzt depending on ) buf not on k.

it X al, f15.» %1 Bx be an arbitrary set of numbers such that
o +~. 8 =1 and let

~ Y(x) = (% €08 7, x + By sin 71, X) + ... + (a4 €08 13 X + B 5i0 A X):
3

I P{x;,..,¥) corresponds to an fe B, we have the Parseval
equation

r
(2 5,4 B ) v (an p A+ Be i) =+ [ F T,
0

For f=sign Te B the last integral becomes ==! M UEE

where R = B> (§ 9.602). If we put f = 6sign T, where @ has :
suitable value between 0 and 1, we obtain that «, %, +..+ fe Y= R
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This fact may be interpreted geometrically !) as follows: on every
‘plane’ a; x;+.. -+ % ye==R% ‘tangent’ to the ‘sphere’ (S)X7+.. +vi<R?,
there exisis a point Pe £,

Let us assume, contrary to what we intend to prove, that
pet all points of S, belong to E, and let P, be a point on the
boundary of I nearest to the origin 0. Let S, be the spher
with cenire at the origin, having P, on its ‘surface’, P, the point
where the radius OP, meets the surface of S, P a point belo{ﬁgmg
to £ and sitnated on the plane /7, tangent do S, at A\ Tt is
obvicus that S, (C E, and that ne point Q7 P, on the Segment
P, P, belongs to E (for, otherwise, it would follow,. h-om the con-
vexity of £ that P, is a point interior to £} :RQe line PP, lies
on {7, and so PP, cannot lie on the plawﬂodhnfgdﬁhtwyﬁrgﬁrﬂ
since [7, and /J; have no point in common\\Thas the line PP,
meets 3, in more than one point. Thepée)we deduce, by con-
tinnity, that if Q== P, is a point on ,’PQ\P; sufficiently near P,
the line ¢JF must have a point Py ig'edmmon with 5,. It is easy
to see that Q lies between P anfi».'f’.’f(for Py and Q lie on differ-
ent sides of /7)), and since AR E, Pef, so does Q. Here we
have a contradiction since nc pomt Q£ £, on the segment P, P,
belengs to £, This estahllshes the lemma.

2.604. Now we \are in a pomtu}n to prove Theorem 9.6(i).
We put (x} + 1) -I—\\-{— (xk +yk) ki From the last lemma follows
the existence af\a function fux), filx)! < - /R, such that the
Fourier coeffidiénts of f; on the places 7, 1.<{ < &, are equal to
X, ¥ In yivthe of remark (b) of § 9.6, this completes the proof
of the thedrem,

c;fiary. Let ¢ {z) be an arbitrary function tendiag to 4-oco
W1th “#. Then there exists a continuous functmn f haviong the
.\Ftlhrler coefficients ay, b, such that the series E rig (1/7,), where

\ o= ad b, diverges 3.

) We use the geometrical language to make more intuitive the arpuo-
ment, which might be given a purely amalytic form.

Y if P is ap arbitrary point situated sufficiently near to Py, the line
QP meets S, and so F ek,

% Gronwall [1, Szidon [4), Paley [3]. Poiting ¢{u)=logy,
We obtaib an f sueh that r?_'s-f—rg_;—f—... =« for every ¢ = 0 (§ 5.33).
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For lat {a, B;} be an arbitrary sequence of numbers such that
ol + 02+ .. < oo, pig(l/p)+ p39(1/ps) + ... = o0, where pi =af +}-
There exists a continuous f such that g.» = ax, &4 = [, say. Since
pfcp(l/pl)—i—pggo(l{p,}—i-... diverges, so does rfcp(l;‘rl)-}-riqv(ljrg)-i-...

9.61. The proof of Theorem 9.6(ii) is easier than that of
Theorem 9.6(i) since we are able to give the required serl}
explicitely '), First we prove the following lemma: For any bounde
sequence {xi, yi} there exists a Fourier-Stieltjes series having &, i

as the coefficients with the indices n., It will be conv&ment to
Wl'lte Xn,yn; instead of x;, y.. We may suppose that o7, —-xn;-i-ynp{l
Let us assume first that 2 >3, We put X, cosn; ).:+an sinmx =

—+pn,\5g; g}fu]ifbra%y%%% 1tlsjc:msmhf:r the partial prt{ducts pr of the
pro

(1) pP= H{1+p,,‘ cos{mx -j-\\svw}}

Multiplying out these praducts, we see that 10 reduoction of terms
takes place (§ 6.4) and that the polynomlal pr is & partial sum
of prp1. Making %> co we obigih, quite formally, a trigonome-
trical series. Since some partial sums, viz. p., are non-negative,
this series is a Fourier-Stieljes series (§ 4.39). Moreover the
coefficients with suffizes®, are Xny Vs It i8 important to observe
that, if » is large enodgh, X > 3, (s), the indices of terms different
from 0 belong all tb\\the intervals (m(1 — ), ni(1 + <)), for every
0<e<1(§ 6.4),¢

In the genéral case A>1, we break up {m} into r sequences
m, g, .’h,)lq, .,...; n, M, .. in such a way that nja/mi > h
i=1, 2 i <« s <r, 4> 3 being a large number which we shall
defmesm a moment. Let P, denote the product analogous to (1),
conswhng of factors 1+ g, cos (mx + 9), where m runs through
.the sequence aj, 723, ... We shall prove that P, + P, + ... + P, gives
the required Fourler -Stieltjes series. In faect, it p is large enough,
the indices occuring in the series obtained from P, all belong to
the intervals (i/V 3, #l '3, i=1,2,... -, 80 that the series P, Py P’
do not overlap. Since in the series P, the terms with indices n
have the coetficients %nf Yns, the lemma follows.

Y Szidon [3).
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To prove the theorem, let {z;} be a convex sequence tend-
ing te 0 #nd such that {x,/s.} and {y./fc.} are bounded. If for
8 Fourier-3tieltjes series }a,4- (g, cosx+ &,sinx) +... we have
;= Knyi®rny; b=V f2n, (he series {a,e,--{(2, cos x+ &, sin x) 5, +...
is the required Fourier series (§§ 4.64, 5.12),

9.7. Wlener’s theorem on functions of hounded vari-
allon. Let f be a function of hounded variation, dn, &, iib
Fourier coefficients, and pi = ap + &3, p, > 0. We koow that, if\f
is discontinuous, then ap, == 0 (1) (§ 2.632), but since this ineqx.\al\ily
may oceur aiso for f continuous (§ 5.7.14), it is not a necessary
and sufficient condition for the discontinuity of f. It is intéresting
that such a condition may be obtained wm,mm,éﬁg.me
replaced by their arithmetic means:

A necessary and safficient condition that afupction f of bound-
ed variation be continuous is that A= (pl-al\-‘Z}g-l-... + npa/n 0N,

We first prove the theorem in thg‘f&llowing form: A neces-
Sary and sufficlent condition for a function f of bounded variation

to be continvous, is &N

o) 23 plein? 8D as - oo,
&= 2

Let o)== [ f (i +nfm)—f @+ [f (e +2x/n) — f (@ +=[mP + ..
T+ 2m) — Fu+ t\(~2ri — 1)/n}]>. Using Parseval’s formula, we
ohtain \

\‘21’ - 4

N | P R

(2) .',\'“' 6/' wal i) du=8mk§ prsin’s

'"\50 . )

& 6.31). I{“f is continuous, @ (8) the modulus of continuity,
and  V.\%h& total variation of f, then, for every n, we have
¥ali) 586 (n/n) V> 0 88 7 - oo, so that the right-hand side of (2)
lendsto 0, i. e. we have (1). Conversely, if f is discontinuous
£ point & f(i40) —fE—0)=d=£0, 2f @=FfE+O+SE—0),
then, it » ig large -nough and («, 8) is any interval of length nf_n
conlaining i, we have if(B) — f(2)| > &3. It follows that, if # is
large, () > d%9 for every u and so the right-hand side of (2)

does not tend to 0 ag 7 oo '

B

Y Wiener [o].

Q!
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We shall now show that, if C,; is the left-hand side of (1},
the relations A.— 0, C,~+0 are equivalent. Let B, denote the ratio
2+ 2%; + ... n%pa)/n. We shall show first that the relations
A,~0, B,»0 are equivalent. Since {he expressions kp: are
bounded, the formula A, 0 implies B, -+ 0. Applying Schwarz’s
inequality to the sum 1-p, +1- 20, + .. +1 7, we obtain that
A, < BP, so that B,~ 0 implies A, 0. \

It remains to prove that the relations B.-0, G --tg*\are
equivalent. Let us take only the first # terms in the gertes-(1),
Since sinz > 2u/F for 0 < # < /2, we see that B, < Cry7and s0,
it Co»0, then B,—0. Observing that py < y2 Vik {§ 2.213) and
breaking up the sum &£, into two, the first cm}&isting of terms
witly indheeslibrary ®%ie » > 0 is an integer; e see that

Hr (e v oo :}
Co <12 ph (k—)+2v2n,£\\—.,-
= \2n K=nrdy B
The first term on the right is equab'to Ba =°r/4-0, it Ba—0.
The second term is < 2V?%/r and se\s small for r large but fixed.
This shows that C,—0 If B, @\and the proof is complete.

9.8. Integrals of fractional erder. Lst f{x) be inte
grable in an interval (a{5). Let F,(x) denote the integral of @
over (a4, x), F(x) thelintegral of F,_,(f) over (g, %}, %= 2,8
It can be verified ﬁ induction that

@ .F\d(.’.‘} ;FI(I)! G- Fd, a<x<b

wheresJ ()= (@ — 1) If 7/ (x) denoles the Eunler Gamma func-
tion, dite’ formula (1) may be taken as a definition of Fy(%)
for'every « >> 0. From the resulis of § 2.11 we deduce that Fa(x_)
~exists for almost every x and is itself integrable ); for 2> 1 it
is even continuous.
This definition of a fractional integral is dne to Riemantt
and Liouville?). In the theory of periodic functions it i3 not
entirely satisfatory since F,(x) is not, in general, a periodic func-

]
| For F {(«) F (x) :fg(x — Hf(Hdt, where g(3) = W1 tor a0
and g (&) =0 elsewhere, ¢
¥ Riemann [2], Liouville [1].
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tion if f is one. Moreover it makes F,(x) depend on a particular
value of 2. For this reason we shall consider another definition,
propounded by Weyl, and more coanvenient in the theory of trigo-
nometrical series /).

Let f{x) be an integrable function having the period 1. (It
simplifies the notation slightly’ if we consider functions of
period 1 and not 2=, bat this point is plainly without importance).
We assume that the mean value of f over {0,1) is equal fo 0, so
that the constant term of &[f] vanishes. It follows that(the
integral f; of f is also periogdie, whatever the constant of \inte-
gration. If we choose this constant of integration in sqp..h‘a way
that the integral of f, over (0,1) vanishes, then the(integral f;
of f; will also be periodic, and so on. Wﬂmamﬁyﬁ?g?ﬁd
the periodic functions f,, fa, ... fs_1, we define f;(¥) as that o the
primitives of f, ,, whose integral over (0, 1)\vanishes. Hence,
the Fourier expansion of f,(x) does not cogt?fi\n'the constant term.

. -~

In other words, if f ~ X c. €%, ¢, 20ythen
@ S f GRACELY
B __—_""%—" £ X — f
} fa(x) n?:_m Cn (2:_;.!_[?)“,3’ J f a

¥,(x) being the function \{l;ich has the complex Fourier coefficients
19 = (2zin) 7 1, =0, (2159, where the actual function ¥_, cor-
responding to the interval 0 < x < 2%, is denoted by fi). The
formula (2) may..bé'considered ay a definition of f,(x) for every
a0, if we p,m;‘T;; = (2zn) % exp (—4 oxl), T2 = Ym R >0, 7,=0.
From Theordm 512 we see that there really exists an integrable
function §5;(x) with Fourier coefficients 1». The integral in (2)
exists foh ‘almost every x (§ 2.11), and the series converges almost
everyivhere. This last fact follows easily from the results of
'§\3~>}, if we apply them mnot to the factors 1/log n as in § 8.71
Npiit to the factors n—=.
Let us denote f,(x) by IJ[f] From (2) we see that
BULf O] = L3 f], «>0, B>0. Since, for a= 1,2, ... LIf]
coincides with the ordinary integral, the most interesting i8 the

Y Weyl 1]
') See Errata.
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case 0 <<e<{1. To find the actual form of ¥ (x) we consider
the formula

= i
) [teetat T r@), o<a<y,
n

which is easily obtained from the equation [ (a) = Jf x* e ¥y
1} \

by integrating round the contour

0Se<z<R 2=Ref 0<O<CEm 2= 1r, Rty

z=get, L8200, AN

L 3

and then u@in e and 1/R tend to 0. Maki.;gg\ﬁt’lie substitution
Ll

£ XD ), 4 doirﬁﬁﬂg into account the lagt remark of § 2.85,
we see that, for 0 << x <1, O
72\
) () (0 =8°

=l b b P o Pt -, 0 <<l

o

It is easy to see that, if we_ omit the term x*1 in the expression
on the right, the limit, whieh'we shall denote then by I (2) r,(x)
exists uniformly in 0.& ¥ <. 1. Taking this into account and
observing - that in the gnt\gral in (2) we may substitue f (£) ¥, (x—1)
for f(x — & ¥.(#), e Obtain from (2) and (4) that

S

A\ 1 7 _
B Sy~ [ fx—tyer—dar = L1 [ roye— st
a’\:“~f”(a)uf F(cr.)_‘!of(}

Ig}i"%rs that the new definition differs from (1) in that
the lower limit of integration is equal to —oo. [t must be remem-
be}teﬁ that the integrals {(5) only converge owing fo the fact that

mt@s mean value of f gver (0, 1) vanishes.
\ / Let Ff":(x), —1<{x1, be the function equal to § in {—1,0; and to

. . . :
T @) m (0,1). Binee t‘Lm(x—f-l)——-’:*"u(x), considering the cuses — 1< x5 0

and 0<Cx<i separately, wo see that ¥ (x) — ¥ (%) is regular and equal
o

to the function rdxy for — 1< yamy, It we replace ¥ by ¥ in the integral
o
{2), the funetion f -

. 18 chunged into F_ from (1) (with @ =0), Thepce we €01

clude that the function J i — £} is regular for 0« x < 1, and so the {Wo
definitions of a fractional in

tegral are, after all, not so esseptially different:



[9.81] Integrale of fractional order. 295

It is easy to define derivatives f°(x) of fractional order. For the
sake of simplicity, we confine ourselves to the case 0<"a <1, which

is the mosi interesting in applications; and we put f*(x) = difl_a(x).
x

It is easy to preve that, if f, ,(x) is absolutely continuous (in
particular, if f* is continuous), then f(x) is the a-th integral of
f% 1In fact, from the definition of f* we see that & [f*] is obtain- {
ed by term-by-term differentation of &[f_,]. In other words,
&[f*] may be obtained from & |f| by introducing inte the ~1at\£ér
series the factors 1% = (2xin)%, and this shows that f jsj;,fﬁia a-th
integral of f%{x). e \ I
www.dbt’aul’i&r”ary_org_in

9.51. Integration of functions satistying Lipschitz con-
ditlons ), () Let 0.<a<{1, §>>0, ut-p <INYf feLipa, then
foeLip(z+8). (i) Let 0<y<a1i ff { eLip a, then [V exists
and belongs to Lip (& —¥). O

Let F{f) denote the integral of’ f over (0,1), so that
F(x) — F(x — {) is a primitive fupelfon of f{x — ) with respect
to £, Integrating by parts the tirat'integral in 9.8(5) and observing
that F(x) — F(x— f) vanishes\for ¢ =0, we obtain

Q- .
W IO j [F (%) - Fx = 2] f‘* *dt.

Let us wrijewd similar equation for fgx+4#), 2>, and
substract (1) fPodr’it. We have /" (B) [fg(x +#) — fo()] = As+ Bu
where A,, B{’dénote the integrals over (0, k), (4, o) respectively.
The integ{'a}xa' of Ay may be represented in the form

AL — B) #Y[F (x + B) — F(0)] — [F e+ k= — Fle—hl} =

O =1 =Pt [f(x+ k-0~ flx—0OD

where 6,9, .. are numbers contained between 0 and 1. Si:_lce
f (&) — f () < M|, — t,|% M denoting a constant, we find

. Y Hardy and Littiewood [6]. A special case of (ii) wiil be found
in Weyl [1].
'} Here we employ the mean-value theorem.
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that (2} does not exceed M{1-p) t 1 p in absolute value, and so
| An| <M (1 By aetbp,

The left-hand side of (2) may also be written in the form
(1-B) rf”{[F(erh)—F(x+k—t)]—[F{x)—F(x—rm =
== Eh[f (x+ 0,8 — F(x+ 0, — 1), A

This expression does not exceed M (1 — B) f2+8-24 in absplute
value and 8o | Bi| < M&™F (1 — B)N(1 — 2 — 8). Collecting the“re-
sults we see that | fo(x + &) — fo(x) | << M, h**F, whers M, i¢ inde-
Pendent of x and 4. This completes the proof of (1)
Ifa+B=1, it is not difficult to obtain that{the modulus
of continuity o (5; f3) of f? ia O (8 log 1/8). b
'}E.Org.]]

www.dbraulibrar 4
Passing to the proof of (ii), we obssrve th gt{\s}nce = e fimy

we have to prove that f,_T possesses giiérivative belonging to
Lip (= — ¢). Let ua put =1—7 in the™brmula (1} differentiating
the integral en the right with respect 40 x, we obtain

@ t [1F )~ £ — 1] 41 .

Since |f(x) — f(x — )| <P and f is bounded, the integral (8)
converges uniformly, in\the neighbourhoods of £ — (¢ and f = =,
and 30 represents a’c}m inuous function ¢ {x). It remains to show
that ¢ € Lip (= — 1 dLet us replace x by x4 4 k>0, in (8) and
substract (3) fromithe new integral. Breaking up the interval of
integration (Qpc%) into two, (0,4) and (&, o), we have, as in the
proof of (B x+£) — ¢ (x) = A, + B,. The integrand in As does not
oxceed (I (K1) —f (k- bty | F () — fn—1) |} < 2y 85
in apsp}ute vaiue, and, consequently, | A, | < 2MA*T ¢/(x — 7). The
intégband of By does not exceed 24y AL and | By | L 2MASTT
Hence f7 e Lip (x — 1),

It has been proved by Hardy [4] that the Weierstrass series
considered in § 2.9.3 is nowhere differentiable if a6 = 1, If a=1/b,
that series may be considered as the (1 — a)-th integrai of a tri-
gonometirical series which ia a linear combination of the series

L]

3] 2 57 cos brx, 267" gin brg.
n=1

a=1

Each of the series (4) belongs to Lip « (for the first of them this
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was aeteally proved in § 2.9.3; the proof for the second remains
essentially the same). This shows that the proposition (if) is false
for y=a: for a function fe¢Lipe, &< a<1, there may he no
point at which the derivative f%(x) exists. The same example
shows that proposition (i) faiis for a+ g=1

9,52, Integration of functions belonging to a class 27 1)
In the rest of this chapter we abandon our convention concerning{
the use of ihe letters p, ¢, which may now denote any numpeis
L\

greater than 1, N\

(1) If fele, p>1, and 0<a<"1jp, then [, € L%, where q I5'given
by the formula 1jp—1jg=a. Moreover M fs 0, 1] LGS 0,1,
where K = K (p, q) depends only on p am_dbrqmlfb%ary.org_m

G IFp>1, Up<a<lifp+]1, then £, € hipte — 1/p)-

We begin by proving (i), which is pqn}pérativaly easy. In
virtue of Theorem 9.81(i), it is sufficient 1o consider the case
1jp<=2<1, Applying Hbider's inequaii}y: we see that the lefi-
band side of the eguation o\ o

1

<N

*

fle = f0=[ f‘(:,;.;&:'} [0t + ) — ¥alb) dt

does not exceed M,(f] M+ ) — Fold)] in absolute value,
and we have only, td Show that the second factor is O (k7).
Supposing that 0 <ha 1/2, we may write

: o\ g o1=r 1
M [i*f'a(t"irh)—?Ifa(t)|ﬁ’dt=f+f +j;=p+ Q0+ R.
a m\/ {1l

(N
Denoting(By”C, C,, ... constants which depend only on & and p,
we may\write the following inequalities, true for 0<f<1and
0<Bs 1
:'\ ' -t w--2
TN | FL8) < CE |E)] < G

The second of them is an immediate coroliary of the ft?rmn_la
) U =l [ (E+ 1) o e (R (1 ) which, 1o
turn, follows from 9.8(4). Returning to the equation (1) we see thaf! if
0<<z < A, then P, {4+ — YD) i < g0, and so Pl Cy AT

Y Hardy and Littlewood [6] see alse Hardy, Littlewood,
and P61y a, fnegualitizs, Chapter X.
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{the reader will observe that (z — 1}p' > — 1 sinee x> 1/p). Simi-
f

larly, since R=f|1 Ay — ¥t — )7 di. and sines for 0<<t A

1]

we have 1¥,(8) — T (f — R = | ¥ () — ¥ (1 +¢— A, < 207, the
expression R satisfies the same inequality as /~ Finally, if
h<t<{1—Fk we obtain, by the mean-value theorem, that
| ¥t + 1) — PO < Cat*? and so Q < Cy A7 &5+ Collest\
ing the results we see that P+ Q 4 R < C, 40+, (Fous
WAF L+ ) — ¥ ()} = O{h* %), This completes the prect/of
the second part of the theorem. « N

- Remarks. (a) Putting f = f, + f,. where f, is & tf}i‘goﬁ‘ometrical
polynomial and M,[f,] is very small, it is easy“to see that
© ,md._b@@bbﬂm)y,org.m 9 )

{(b) The theorem which we have proyed holds also for
p=1, 1< «<2 This follows from Theo{égﬁ 9.81(1) and the fact
that the integral of f is continuous N

9.83. Theorem 9.82(i) is rath@r’deep; its proof is long and
will be based on a series on leminas, Before we pass on to these
lemmas we observe that a theorét less general than Theorem 9.82(1),
viz, that f, € L77° for every e">‘8,'1's trivially true, For ¥,(f) = O )
in the neighbourhood of('h= 0, so that ¥,(f)«¢ [ra—e—¢ and we
need only apply The{i'eﬁl 4.18.

9.831. The fi%t of the lemmas is as follows: Let f(x)>90,
g(x) = 0 belong wespectively to [0, o), LH0,cs), where p>1,
g>y If A=W+ Yg—1=1—1/p' —1/g'> 0, WA 0, 1= 4
Wolg; 0, ) &'B, and if F(x) denotes the integral of f over (0, x), then

N X
DN ~-—§—} grat <K AB, (K =p»o).
N ¢ i

.0\.0 .
"\ Applying Hélder’s inequality we see ihat the left-hand side
Ndbes not exceed B maltiplied by

- _M-qr_ 11"0"
) ( [Fets ldt} .
o

From the inequality 1/p+1/¢> 1t = 1/g + 1/¢ we see that ¢’ = P-
Hélder’s ineguality applied to the integral defining F gives
Fty < A7, Hence, writing F¥ = F¢-7 Fr_ we see that (2) does
not exceed
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’. 1/g’ §—p

A S i S Y g—r T FYE N
a4 ( Frér 7 dt) =47 ( (—) dt) ,
/ /i

and, by Theorem 4,17, the right-hand side does not exceed Ap'r¥.

9,832, The second lemma is: Let f, g satisfy the conditions
of the preceding lemma and be, in addition, nom-increasing. Put-
ting w =12 — 1fp — 1/q, we have

rfx) g \

where R, depends only on p and q. Since

on ] ca x ".( N
i= ' t—xy d B {x—8 | =1+1,
[etat| [re—orvas] + [rooasf [g @Bl -1,
it suffices, in virtue of the symmetrical réle af\f and g, to con-
gider e. g. /,. Lef =1 — p; decomposing the inner integral in I
into twe, taken ever (0,#/2) and (#/2, f),and remembering that i
is monoionic, we find that this integral does not exceed
GO FRO+FGH GON <DIGY FEOIGH <078 FOR,
sinee f{u) < F(wyju. Tt remgiﬁ,é‘ to apply the preceding lemma.
9.532. The third lefima, whicl is the most fundamental,
may he enunciated as’fn]:tows:
Let f{x), g {x),\k\}é) be three non-negative functions defined in
(— oo, 4 oc). Let f%), g'(x), #'(x) denote three functions, even, non-
increasing in (08€), and equimeasurabie ') with f. g,k respectively. If
".’,\'“ Foo b
M O 1=/ [fme@hitndsd
N\ e e

o —s
<

and [0S the corresponding integral formed with f*, g%, I, then 1T
N\ . .
“\\/This lemma asserts that, among all functions eqmme?surab!e
Swith f, &, k. the maximum of / js attained when the functions are
even and non-increasing in the interval (0, ).

() We start with the case in which f, g # are characteristic
functions of sets ~, G, 4 consisting of a finite number of inter-

2

Y § 942, Let m(y)—=| E(f>y)|. We may define f(x), 0L ¥ <C=. a3 the
function inverse te 4m (y). We assume that FHey= a0y for x50
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vals, each of the form (n, n - ,n=0,+1 %2 .. We shall

suppose that the numbers of these intervals in which £, g, # nen
vanish are 2=, 23, 27, respectively, «, 8, v being even. Let

s

@ e = [gOrGrnd, sw= |g@Oretnat

The continuous curves y =¢ (x), ¥ = (x) are linear in the intefs
vals (m, 2+ 1), and y =0 for |x| large. The function % (x) is gved,
vanishes for x > y + f, is equal to 23 for 0 < x <y — 3 (assum-
ing, as we may, that y > 3). and is linear in (r—3 1€ e )
never exceeds 28. Integrating (2) we find that the ageas of the
two curves are the same, viz. 46y, Multiplying ¢ (gpby f (x), 4(x)
by fx), and integrating over (— oo, + oo}, we dédice the lemma
fronivpesthetlid kY By ¥ delitions if o L r—BoRM =y B

Suppose then that y—p<a< T4 B:.\\“fe can find two in-
tegers B, <C B, Yo < ¢ such that To— B = T,'Y‘Es 7o+ § = = The lem-
ma ig true for a, By, 7,. Thence welWwill dedace it for «, 8 +1,
T+ 1. For the values of ¢ (x} in the interval (— o, #) will incresse
exactly by 2, and the result will. e established when we have
shown that the values of ¢(XP in (— oo, + o) will inerease
at most by 2. Since ¢ is linedr in the intervals {(n, n +1), it saf-
fices to consider integral #alues of x.

1t H, denotes thp“s}t f1 translated by x, then p {x) = | GH;|
represents the numBenof intervals of length 1 common to G and
H:. Now we may Plainly suppose that one of the two intervals
which we add 10"G (and similarly to H,} ie extreme on the leff,
and the othe éxtreme on the right, with respect to G. Then the
reader will (easily coavince himself that GH, will increase by
at most two intervals, each of length 1. For let J', /" be the inter-
vals which are added on the left to G and H, respectively; then
(G2Y) (He +J") — GH. = J' (H, + J"y + GJ. 1§ J' does not be-
Tong' H.+ J", then | GH,| remains unchanged when |J"G|=0,
afd inereases by 1 otherwise. If J/ belongs to H.+ J”, then /*
lies to the left of G; hence |/"G| =0 and | GH,| increases by 1.

The same argument gives the result for e, B, + 2,7, +2, and
80 on, and finally for o, B, 1.

(it) Changing variables we establish the trath of the lemma
when the intervals have rational end-points. The restriction that
the number of intervals in each set is divisible by 4 can now be
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removed, since, if this is not so, each of the intervals may be
divided into four equal parts,

(iiit To prove the lemma in the case when F, G, H are ar-
bitrary measurable sets, we observe that F (and similarly G, H)
is a difference between an open set and a set of arbitrarily small
measure; hence, for every e>> 0, we have £ = 7+ F, — F, where
F consists of a finite number of intervals with, say, rationals
end-poinis, and |F,! <, | F;| <e. The reader will have no dif
ficulty in reducing the present case to the case (ii), obsesfving

-that, roughly speaking, if one of the numbers |F|,lGUH| is
small, the integral [ in (1) is small.

In the above argument we tacitly assumed that; each of the
numbers | &, | G|, | ff| is finite. That thwmlﬂbimdﬂbrwﬁmg ithis
assumption will follow from proposition (v) below’

(fv) If f>> 0 is any funclion which only akes a finite number of
values «,, 2, ... 4y, then f = &, f; + & fo +.5d"Um f, where u,, ..., i
are positive constants and f,, fs, ... , fmde’ the characteristic func-
tions of sets F, (C F, (C oo C Fe 'l‘hen:f =i fit iy fat . +Hmfm
If, in the same way, g=v, g1+ +'Ungmk =w, iyt + wp £y, then

=X & 'U’;‘w'g I}ﬂz < b ;v Wy 1!]’7?: 1

where [y are formed W}fh ‘f:, &, s This proves the lemma when
f, & # assume only \{}mte number of values.

(v} Let {fa}Ngn}, {#:} be three increasing sequences of non-
Degative fuuctlogs ‘and let fo o f, 81— g fix k. If the lemma is true
for fu, gn, Au, bt Js also true for f, g, 2 In fact, fx(x) ga(2) k,.(x:}-t)
tends, incpessing, to f(x) g (f) 2 {x + ¢), and so, using an cbvious
ﬂOtdthl‘l\We have, by Lehesgues theorem, fL,~1. On the other
band, f\ fag > gn B =k hence > 1I,> 1 and, conse
qllfrmt}y >l

)" (vi) Every non-negative function f is the limit of an incre-
dsing sequence of functions assuming only a finite number of
values; e, g. we may put f.(x) =27"k 0 k< a2 where
RE <l fo(x) <(k+1)27", and fa(x)=n2" elsewhere. From this
and (iv), (v), we conclude the truth of the lemma in the gene-
ral case,

Changing ¢ into — £ in (1) we obtain a similar resunlt for in-
tegrals (1) with # (x — £) instead of & (x4 £).
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9.84. Completion of the proof of Theerem 9.82(i). Let
us replace, as we may, the interval of integration (0, 1) in the

formula 9.8(2) by (—4, 1), and let g{(x)eL? be an arbitrary
periodic function such that M [g] =1. Then (§ 4.7.2}

Wl fo] = Max_[fn(x)g(x) dx < Max f f |f(D) g(x} Ffx— )| dx dt-'\
£ -y, g Sy -y,

Let /"(x} be even, non-increasing in the interval 0} << x < =y apd
equimeasurable with the funetion’ equal to |f(x): for | x| =3 and
to 0 elsewhere; similarly g*(x). Since | ¥, (#) < C|u "~ for fz <1,
where C depends only on 2, we deduce from Lemma{9.833 (with
B{uy=|u{"" and h (x + ¢) replaced by % (x — £)) angd Lemma 9.832
tha‘i’ ?\)3@[ _5%]1' aﬂﬂﬁ?r not exceed 8

ary .ol gin

o i Nl
Max 4C [ [ mfl)g___lﬂx_) dx dt < 4CK, S_IJ'EPL)‘{;\(], o] Wiplg 0, oo,

g o0 |x—r!““ N\
if1—a=2—1p—1g, i e if «=1/h> 1/g. Putting 4CK, = K
we obtain that MLf,] < KM/ 29

8.85. Theorsm-9.82() Is false fof"p = 1, that ia if fe I, ¢ = 1/(1 — ), theo
f, ueed not necessarily belong to L0 fact, il f()=—C + ¢ llog 178 ’
for 0<{t<C1/2, F () =0 for 12, %<1, where £ is a constant sueh that ithe
maan value of f over (0,1) \gn'n:hhea, we have

1, ”

= [0 de—tdt= [ 1O ¥ —nat+R,
P N H

\ X . ,

where R s a fu{cgibn regalar in a neighbourhood of x =0, ¥ (1) = w1 (@)

for u>>0, ¥dy= 0 otherwise (§ 9.8). If 0.< x<1/2, the last integral exceeds
A

Cx® Pt .
\ X — 11
™ - — log 1/1 9 at,
AN r(a+1)+r(a)f‘ (fog 171y
m\’ s 4 0
“Hen'ce, for x small, £,00) 20" Ylog 1/x) 9, and =0 f el% To show that

Theorem 9.81() is falae for a=1/p, i.e. that if fe L?, then Fip need not be bound-
ed, we may arguc as follows. Multiplying the integral in 9.8(2) by glxjels
integrating over {0,1), and inverting the order of integration, we see tbat it
for every feff, fl_f,o were bounded, then, for every g{xyel. we should have
g,f.PeLP', whith we know to be falss,

9.86. It is of some interest to investigate whether Theorem 9.82(0) 18 8
carollary of the theorems on Fourier coefficients eatablished in the first part
of thie chapter. We shall ehow that this is really the case when p <254
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prq having the meaning of Theorem 9.82(), and cnly then. Assuming f reai,
considsr the inequalities

<o |
|n<“,

) Feofnf o, (2)
. fr=e] n=1 n"-‘f'
where c; c;, - i8 the sequemee !¢, |,f¢,|, .. rearrangsd in descending order of
magritude. The inequality (1) is implied by the relation fe I? and (2) implies »
that /e L9 Now (2) in certainly true if the series with terms & e pons

. - - N
verges, We have o7 n—od = EF nP 0 —P 0’ +2—P and . ainee oL

7'\
—og +2—p=—Q/f —1phg+2—p=4qip' —pp, \

we obtain that £, n—od = P pf—2 (ch 257 )¥ . Sinee the ter;nﬁhdﬁ the left
in (1) decrease monotonieally, the expression of /"72.n buunded, i e
[ w0 (1), and this, together with ths ]ast\'formui%. nua!}f it 1m\3fquaﬁty 1),
ensures ihe inequality (2), provided that p<{2<g, p<SghVTo get rid of the
last eondition assume that p<C2< g and ¢ <<p. We hayethen ¢/ <L 2.<pl g <p.
Bince o= ji/p—1/y =1/ —1/p', we see, by the x Kult already cbtained, that
integration of order « trapsforms L9 inte 7 Wod ‘this is equivalent to the
fact that the said integration trensforms L7 im‘.o 17 (§ 4.63(ii) ).

We have only proved that M At ](w, out in the same way we cal
obtain the complete result i!tq,{ £l < K} U]

It i3 easy to see why the avae.argument fails in the cases p< g< 2
or 2<p < g (which are aquivale.nt} €. g in the Jatter. Integration of order o
consists in introducing the {ectors -;,,—[n|"“cﬂ into &[f]. where {c,} is
8 Speciol sequence of upit numbers The prool piven above shows that, it
P2« g, the theorem hb{gﬁ when ¢, ia an arbitrary bounded sequence. To
show that suech &n €xtension is lmpasslble for 2<p<Cq, let us suppose
that the Fonrjer expdtision of f is the cowrins series with coefticients ¢ ,Wn log n,

=123, ., where s,f\_ =+ 1. Choosing for {sn} a apecial sequence, we may have
fel?, p=y (83.8). Introducing into &{f] the factors e’y 0 a <Y, we ob-
tain the ae\Qes Z(cos nx)fn’ Yt logn. In the neighbourhaed of x =0 the sum

of this gdries behavas like x J""m,a‘lclgx and sc it does not belong to é.T if
I‘;"'-”K>a If e =1/p—1jg <Y%—1/g, the serics does not beleng to L

7 \
\
\ ’ 8.9, Miscellaneous theorems and examples.
1. Let wif), wylt), .., w,(f) be a system of functions measurable and
bounded in a finite interval @< ¢ b, 2nd lat

i - I]'fB B I| 2 1/ &
PETCE dr} | {_Z%xsl' }

=1 | i=]

L
') Theorem 463(ii) holds in the case of complex factors.
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Show that (i) Ma?) is a multiplicatively convex fumction ju the triangls
(d)()g::::{_l, 0B <=, (11} Theorem 9.11(b) is a conesequenes of (i) M.Riezz[3]

[Once the continnity of Mﬂﬁ in the triangle < has been eatablished,

(i) may be proved by an argument similar to that of & 9.2, independently of
the more difficult Theorem 9.23. To prove Theorem 911DY, we pul wit) = gdi),
compute M, , and M, .., and obtain '

i 1ip
¥H) M, 45, 4, B < MOE—PVP { 2 ¢ !P} 1 O\
i=i e
'\
where s, i8 the n-th periial sum of the series (§)e. %11 oy pp4- .. Since
Mle] <=, § is the Fourier series of a function 7(f) and a salfaequence {S,)
of {sn} tends almost everywhere ta f(f). An application,af\’f‘atou’s lemma to
(1) completes the proofl. 1f the interval where the fungtiors ; are orthogonal
is infinite, obaerve that lhe inequality (1) is true fow ay intarval {a, 5} com-
plefddy ”Yn@é?-‘l'&“jt‘aﬁ &8, S8 it holds for (a, b) aldp):
2. Let f{x) be a real functien helongin ‘gg\ff’, 1< p =72, with Fourier
coefficients a,, &,; the inequality of Theoremy®d¢a) then gives

i.-" »

é . piin lip
ﬂ{%[sf(t)ipd% .
Ry

i

| i oo
a . . N
{ Fy + 2 ( I, I.p( + i bn |P~)‘}
el S ON
Inverting this inequality and intei’éh’anging the numberz p and 5/, we obiain
the inequality corresponding to Theorem 9.1(b).

8 Let 1< pas2 \{\‘q. P<ir-ip, g <S sl g L= lpt+lr—L
= lig+1js — 1. Thewti Under the hypothesis of Theorem 9.4(il),

&Y.
(S

(1) N
\¥/
where A;, dq{nds on g and M only,
(ii).(f:?(ﬂ;ﬂ'—ﬂs{m, the series ¢, ¢, is the Fourier series of a func-
tion fehdyand
.\f\\&; o 1'%
@ MWL f] < Aq{Z { n_E-'-)S} ,
7\ A=1
\M\}r'here Aq depends on g and M only.

The results are doe, in substanes, o Hardy and Littlewood (10,
who considered the case of trigonometrical series.

<AL W11,

[Proposition (i) s, 50 to speak, an intermediate result between Theorem
9.11{a} and Theorem 9.4(ii), and ig a consequence of those 1heorems. To Drtiz"e
it, we observe that r=t,ptt,p, £, 220, £, -1, =1, apply Héiders inequality
to the left-hand side of (1) and use the theorems just quoted. To prove (h
we show that {Z¢F 2% does not exceed {T (c:n #)9}, and apply Theo-
rem 9411,

4. Lei {5,} be a set of functions erthogonal, normal, and unif?rmlf
bounded (| g, |- M} in an interval (g, 8). i e, <1, n=1,2,.., the ¢'s aré

T
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the Fourier coefficients, with respeet to {lpﬂ}, of a function f such that exp if
ie integrahle for every A< 1feM.
lAssuming for eimplicity that r, =0, observe that
x b Tk - k1, 1
PR FA _ i {(£—1)
) Zn kdx o — MF2 —kitk—1) Y L i
o ] rrass Py < .
for £ =2, and that expra=1-+ha+Yrut4 ]
% 1f the funetions ¢, siatisfy the conditions of the previous theorem,
the interval (a, &) is finite, : f|log+ |f! is integrable over {a, #, and ty are the
Fourier cocflicients of f, then the series I|y,|/n converges. R
{Thiz fcllows from the previous theorem by an application of.Yqu\ng's
inequality. Observe that the inequality (*) holds if we replace f by.any part-
fal sum of the series ¢ ¢ + oo 9o+ .1 e\

6. Under the conditions of the previoua‘@ﬁé'&l‘eﬁ:bmuﬂlm"ym'g-m

L L om De Bl Tnl oo
P!él 7t =] R xi\\'
whers {T;} Is the sequence {iy,'} arranged in degeending order of mag-
nitude, and % is any positive number. For a :ajmi?arx result see Hardy and
Littlewood [15)

[The second inequality follows fmm'iﬁgnﬁrsl].

7. When 1 <p< g, equslity in 'I‘.h;df‘em 8.1{a) occurs if and only if £ i
2 trigonometrical monomial, i e. if %)= C¢"™*, where £ is 4 constapt and
=0, =1,.. Similarly equality ipTheorem @.1(h) ean occur only if all the ¢,
except pechaps one, are equal Lo b

[For the proof (which jénﬁot quite simple) ses Hardy and Littie-
wood fi0}. The special &é p = 2%/(2k —1) is comparatively easy and may
be proved by the arguhnent of § 9.12, investigating cases of equality in
Young's inequality 448(?). See also Hardy Littlewood, and Pélya,
Inequatities, Chapter W],
8. Let 'R\‘;:}(a,.ﬁ,} and P, = (a5, #2) be two points“;n t}lg triangle
) 0\{\4{?'}»;9;:;34;& If a sequenmce {i;} belomgs to (L7, 1 M) and to
(L%, VRN 48), then it belongs also to (L%, L' for every point (s, )
on the.fegient 2, 7. M. Riesz [3].
<\:['The proot follows the same line as in § 9.25]

9. (i) Let a,, 8, be the Fourier coefficients of 4 function fix}e I o1
then, if n, \/n, > 17> 1, the series E(“i;+bif] converges. More generally

(i} 1f the power series Iz, 2" belongs to ff (§ 751), the series I | g

tonverges. Paley [5: Zygmund [3]

Proposition (i) shows that, if ¥ (x} - ¥]) ==, the function fix} of Theo-
Tem 9.6(ii) dees not belong fe any class L7, p=>1.

{By Theorem 7.53(vi), F{2)=F(2) Fz}, wheré F,(2)=E 3, 2" and Fy(z)=% 12"
belong to M2, Let T |8, =8, X!1,[t=C" Then

[



236 Chapter 1X. Farther theorems en Fourier coefficients,

R0 k=it gl Rp—r;_y LIPS |

whence we easily deduce (ii)].

10 (DIF0Ce <1, 0001, «-+B2>1, and if felipe, then fg(x) has
a derivative filx)eLip{a+§—1). (i) If 0<Ca <y <1, and il f{x) has a de-
tivative fx) e Lipw, then fT(x) e Lip (1 + = — . N\

[Corollariea of Theerems 9.51]. O\
¢\

1i. Theorem 9.82{) holde for p=1 provided that &(f } is ’a Fourier
geries.

For the proof, which is rather difficult, see Har d@; anﬁ Littla-
wood [6]. ¢

Wag dE ibrary.ovg.in ’ ‘\

1-dpraylit TIHLTRD 1), It fel’, gel”, welhave the formula 7.3(3),
the series on the right being convergent, If » =2 tha beries converges abso-
lutely. Show that this last result is falae for any otheér value of . M. Riesz 4.

{Suppose that 1 <<r< 2, and let r(I;’(l\- @), 0<Za< 1/2, There is a
function R (x)eLipa such that &[#] does not converge absolutely. We may
agsume that S[h] =T a,cosnx 13 a purely tosine series, for atherwise, if xp
is a point where & [k] does not converge sbaolutely, we may consider
L1k O+ %) + h (%, — x)} Instend of 9. Let

Ho =3 8% cosnx, E(x} =h*x = Ena a, eos (nx | an).
N\ n=1

n=1
"\
Since %|a,| ==, the Parsayal serles for f and g does mot converge abeolute:
. I
ly, although fel” (§$ 221, 5.7.2), and g is continnous und so belongs to L'}

18. Let fpy¥e, ¢™, g~Id,é™ It fel?, gel’, whers 1<p<2
p<r=<p, the sorjes
\u
) \“\Z |n |—l\ —Vighrf {aign n) d,, A=lp+1r—1,
" .
+ S
converges If in addition »< 2, the series (1) converges absolutely. Hardy
and\thtlewood {14).

\l V" (It r ==p', the theorem follows from M. Riesz’s equation 7.3(3). Appiyiog

his special case to the functions f,(x) and g (x), and taking account of Theor
rem 9.82(i), we obtaln the convergemce of {1). To obtain the second part of
the theorem, apply Theorems 9.9.3() and 9.1{a)l.



CHAPTER X.

A ¢
.'\“\

Further theorems on the summability

and convergence of Fourier seriés.
W W, dbl‘auQLbraL‘y org.in

i0.1. An extension of Fejér's theovem. Let f(x) be
an integrable and periodic funelion, and lét s (x) be the nsth
partiai sum of E[f]. Fejér’s theorem a{s&s that, if f is con-

tinuous 2t the point x, then )
i Y -0
t ”+1§:{S.(xa ()

as -~ o~ We shall prove_a. ,result from which it will follow in
particular that, at every, pomt of continuity of f,

1\ $
2 \}H—I |s,(x) —f(x)|-0.

The relation (2) {ells us that the mean value of s5.(x)—f{(x)
tends to 0 not‘because of the interference of positive and negative
terms, but/bécause the indices v for which |s,(x} — f(x)| is not
N\ ;
small aré_eomparatively sparse.
.WE shall require the following lemma.

N el r>1, then, for almost every x, and k tending fto 0,

/N

™ f[f(xit)-f(x)]fdx:o(h).

The case r=1 was considered in § 2.703, and the proof of the
general result is not essentially different. For let a be any rational

1 7, -
number, and let £, be the set of x such that I f [ flx X 6 —wjdt
Y

does not tend to |f(x)—al as k- 0. Every set E,, and so their
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sum E, is of measure 0. If x¢ E and if % is a rational number
such that |f(x) — B :<le¢, then, by Minkowski's ineqguality,
h

1 ) . 1'r 1 h. L : 1'r
{E-J;f(xit)—f{x);’dt} é{;a/‘if(xii)"ﬁlrdf} +

i1 * 1ir
+‘qu ‘;ﬁ—f{x)l’df}

Since the first term on the right tends to |f(x) —§' qs\'%\o,

and the following term is equal to {f (x} — §#} the left-hand side

of this inequality is less than = for A4 sufficiently stall. Since
¢ >0 is arbiteary and | £| =10, the lemma follows; ()

wiwkelbaltl B (Hotglint- f (x — O — 27 (x); in ~\"'i}»v of the rela-

ton |of)l <If(x+H—Ff(x)i4]flx—1) —\f,(x} , and applying
/ i

P g .
Minkowski's inequality, we obtain thatl @..(%) = [ eu.()] df is
% 3 0

N

o(k) for almost every x. The chief abfedt of this paragraph is the
following theorem 1). \\

, 8

W If felr, r>1, and }';f:élis any positive number, then, at
every point x where ©, (k) =olh), we have
1 x
@ 2 [50%) —f (K) k>0 as n > eo.
n+ 1,<\ -
(i) If fe L ond if f is continous at every point of an inter-
val a < x < &y, bhe relation (3) holds uniformly in the inferval (a,d).

In the ﬁ}‘ﬂ place we observe that, if (3) is established for a cer-
tain vaiug.of &, it holds a fortiori for any smaller %; this follows from
the faci that, if ¢, ¢, .. ¢, are arbitrary numbers, the expression
i ?{Iﬁ’+|€e [+ .. + len[®)/mi* is a non-decreasing funetion of &

Athis expression is equal to %Uifg; 0,m], where g(x)=¢ for
NA1<x S J=12,..,m § 415). Secondly, it is sufficient
to prove (8) for k=r'=r/(r—1); for {D, (h)/k}" is a non-decreas-
ing function of r and se, if @, (k) =o0(k) for a certain value
of r, this relation remains true for any smaller r; taking 7 suffi-
ciently near to 1 we obtain £ as large as we please. Finally, it is

') Bee Hardy and Littlewooad [16) (for the case r=/# =2), Carle
man {2], Satton [1].
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sufficient to prove (3) for the moditied partial sums s, (§ 2.8); for

|s,— fiF = ( s, f|+ |8, — 5 )% hence, applying Jensen’s inequal-

ity (§ 4.14), we obtain that |s,—f[*< 2" (si— fl+ s, — 5%

and it ja enough to observe that |5,— 5, |* tends uniformly to 9.
Now, if 0<<vln,

T 1/nt .
# t sin vf 1 () ()
S —r @=L [ p@ I g ([ 4 [)=a 1

( mf ()2tg1}t T ;,[ mf N
oA
n 1k 1 " 1% 1 n 1k \.'

— ST ’kl [ ("} g {n) :;}' \

{n+1-,.tfols" a é{ﬂﬁ-lg’;'a‘ '} +{n+1;§;]ﬁ“’,’|}
and (i) will be established when we hqy@\gmu@%ﬁqgl,gﬁhe
terms on the right in the last inequality tends\to,0 as 7- oo,

Since 'sinv#/2tg §£] <v for 0<{f <=, we obtain thaf Y| does not
excend 7L v B, (1/n) <V Pes(1¥) =7, The relation P, (h)=0{k)
implies &, () = o(h). Hence 7, +0 and .\~

@ 1 o 1k 1004 AL
- )\ »"_: 0.
e <@gy -

Now ohserve that the f's arei‘Fogxrier coefficients of the function
equal to o.(f) totg L £ for Yp Lt <5 and to O for — 7 <E< :lfﬂ.
Applying the Hausdorff-Yeung inequality (§ 9.9.2) and supposing,
a8 we may, that 7 xégw% have

01 n O Y 1 1 ﬁ| g6 7 )“'
5 . » e} P SN GPeul ) N .o i Y, | 2 BN
©) ([n+1:.£g B ik} é{n-i-l)h‘*(w[ﬂlg%f‘

9.\ .
where & 7" Replacing 2tgif by t, and integrating by parts, we
seo tha'st;}\hé right-hand side of (5) does not exceed

N,

N ;\: L ® 1 ‘ {¢x.r(r) ],J-_ + , = @x',(f} dt}”r=
\ ) | (n,{_ l)”* tr 1n A irh

- —1—-{ o=+ [ o) dt}”’=
(n 4+ 1)%* tfa

={n+ 1y Ve fo (1) + 0@;-1)}1,? =0 (1)

_ Hence the left-hand side of (5) tends to 0 and this, together
with (4), proves ().

Q!
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sum E, is of measure 0. If x¢ £ and if 3 is a rational number
such that |f(x) —B{<}¢, then, by Minkowski's inegnality,
L3

. 1ur 4 it
{%—jlf(xit)—f(x}i’df} g{i—fif(xtr)—asfdt}l +

Hy [l reral

Since the first term on the right tends to 'f(x) —3| as &9,
and the following term is equal to |f(x) — 3|, the left-hahﬂ‘ side
of this inequality is less than & for % sufficiently small’ Since
¢ >0 is arbitrary and ;| £| = 0, the lemma follows. :
w0 B (E ot gkt f (% — ) — 27 (x); inyiew of the rela-
tion || < |f -+ —f (0| +|f(x~ 15— ), 2nd applying

A\ A
Minkowski's inequality, we obtain ‘rhat'\‘(ﬁ,,(h)_—_ﬂ pAl) Tl is
A 5

o(h) for almost every x. The chief objeéi of this paragraph is the
following theorem ?). o\ ¢

B If felr, r>1, and if RNs any positive number, then, at
every point x where D.,(h) = ofk), we have

1 =
@ A 12 5B F (-0 as no e,

O
(i) If fel, anfhf J is continaous af every point of an inter-
val a < x < b, t{ze: relation (3} holds uniformly in the interval (a,b).

In the first.place we observe that, if (3) is established for a cer-
tain value ©f%; it holds a fortiori for any smaller £: this follows from
the fact-dhat, if ¢, ¢, .. cn are arbitrary numbers, the expression
(e, Akbes P4 oo+ tenf)md s a non-decreasing function of £
{thisy‘expression is equal to %[g; 0, m}, where g(x)=g¢; for
(FT<x<j, j=12.,m § 415). Secondly, it is sufficient
to prove (8) for £ =r'=r/(r—1); for {®D,(A)/A}'" is a non-decreas-
ing function of r and By if ‘I),,,(k}-:o(}z) for & certaio value
of r, this relation remains true for any smaller 7; taking r suffi
ciently near to 1 we obtain £ as large as we please. Finally,it i8

'} Ses Hardy and Littlewocd [16] (for the case r =4 == 2), Carle
man [2], Sutton [1).
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gufficient to prove (8) for the modified partial sums s, (§ 2.3); for

i8,— FiF =2 s,—f|+ s, — s, |} hence, applying Jensen's inequal-

ity (§ 4.14), we oblain that |s,—f}F< 2 (s,— fF+]s,~ s,

and it is enough to observe that |5,— s, {* tends uniformly to 13
Now, if 0<Iv<ln,

S — F () = f 9lt) ;:“ ‘:ft dt___( f - f) £ 4,

'\\

{n_ﬁZ” ﬂk} <{n+1£‘;l“[n)|k} k+{ v;;w(f”k}\' “

and (i) will be established when we h%%ﬁ’&ﬂi’%dﬁ&%‘ﬂ gr%f iIbe
terms on the right in the last inequality tendgNto 0 ag A -+ oo,

Since "sinvi/2tgLf] <v for 0<f <w, we obtain thal ja!™| does not
exceed =i v D, ,(1/n) v P (1/¥)=7,. The, a‘&}a‘tlon &, (k) =0 (k)
implies q)x,l(ﬁ) = o(k). Hence 1:,—»0 and

’n 1k
(=) % >0,
{u+1£| |} {n+1§17’“} 0

Now observe that the f's are Fcurler coefficients of the function
equal o o.(t) L ctg 47 for Mo 2 tx and to 0 for — <2 <1/n
Applying the Hausdorff- YOung inequality (§ 9.9.2) and supposing,
48 we may, that r = \_\2\we have

@ 11 5 Bn}.k}'*é,_i__r(l [Lotfar)”,

)

ln+1 'S0 (4 1\ 5214
where % Repiacmg 2tgif by t, and integrating by parts, we
sep that’%e right-hand side of (5) dees not exceed
s o) 1 [cox_,(r) "Ly J[ Pl dt}'f;
\V (aryEll o e o EH
1 'E ifr
S B Py o(t—')dt} -
(n+ 1)”"{ =) 144

=+ Do (v + o () =0 (1)

_ Hence the left-hand side of () tends to 0 and this, together
with (4), proves (i).

Q!
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The reader has no doubt noticed a curicus feature of the
above argnment, namely, the less we suppose about the function,
i.e. the smaller the number »>1 is, the larger value for % we obtain,
The argument however breaks down for #=1 and the problem
whether (3) is true for integrable functions remsins unsolved,
even when £ =1.

It is also of some interest to observe that it is sufficient {6 >
consider the values of r of the form 2¢/(2/ — 1, £=1,2,3, .40
which case the proof of the Hausdorff-Young theorem is. $imple
$9.12), g O

It fe L, r > 1, the proof of (ii) is essentially ihe §aifie as that
of (I). We need only observe that, if a < x <&, then @, (4 =o(h),
P yblipdthy ] ibwifgrmty.iin x, and that the estpiates we obtain
are also uniform in x, If fe/, we can find dn’ interval (a, b)),
¢ <a< b<b, such that f is bounded in (al.bl):‘t}et Fly={e+-"(x),
where f'(x)=f(x) in (a,5,) and f'(x) </0 elsewhere. 1f s, and s}
denote the partial sums of & [f'] and S[¥"), then s, = s, + 5" and

TR

1 & 14 1 ;1 N 1 = : k}m
11 -‘i —f® b & vt
{n+1v:o*3“ f'} {rz-l—l‘,;,f,s" f|} +{n+1?2;‘j|sv fi

A

The first term op~lhe right tends to 0 uniformly in X,
a < x <. b, since f' i\founded and so belongs to every L'. Since
f'(x) =0 for a, < <D, the expression | 5" — f"* tends uniformly
to 0 for @ < x # Hence the second term on the right in the
last inequality fonds uniformly to 0 for a < x < ¥, and the proof of
(ii) is compléts:”

Weddd that (3) ia true if £ is integrable and is continuous
at the peint x. This is a special case of (ii} when the interval
{a, B veduces to ome point. The resuit holds if f has a simple
discentinuity at x and if 2f (x) = £ (x 4 0) + / (x — 0).

10.11. When r=4 =2, Theorem 10.1(j) may be proved by
a different argument which also works for general orthogonal
systems of functions.

Let 9o(x), @1(x),.. be a system of functions orthogonal and
normal in an interval (g, b). If Y ¢} converges, and if the s.en’f:’-i
Co 9ok X) + €1 §10X) + ..., with partial sums su(x), is summable (C, 1) in
aset £, |E[>0, to a function s (x), then
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TR S @P0 s noes,

Jor almost every x ¢ EY).

Let s.(x) be the first arithmetic means of [s.{x)}. We shall
prove the following lemma: If I ¢ <&, the series L[sa(x)—oa{x)]¥/n
converges for almost every x €(a, 5). In view of Theorem 4.2(ii),
it is suificient to show that the latter series, integrated term by™\
term over (a,b), is convergent. But

O\
SR ™

,,;,nj(s an)? dx = nélm(n-f-l) 2k

- Q:;k 2 v : kak}ew_.}ib;ag(larary org.in

=1 kn =k T (”- + 1)2

and the lsmma follows. Observing that, for eyery» convergent series
L tts, we have 4, + 2u; 4 .. + 1ua = 0(n) (§34 (1)), we obtain that
(s, — 1, )24—(32——01)3—}— A o(n} for almost every x. Now

] A 1 .1 A
—— — - F’ : an — §
lﬁ-l-i'{“(sk S)I { (3:: Gk)l+l+12(: )]
and since of the two terms ’on the right the first is (1) for
atmost every x, and the setond for every xc¢F, the theorem is
established, e

102, In thig \;}ragraph we shall prove a number of thee-
rems on the Ahel ang Cesaro means of Fourier series. The
results wiil mogtly bear on the behaviour of Fourier series in the
whole interysl(U, 2=) and not at individual peints.

"\5

10'}\1 An inequality for Integrals. Let f{x} be a non-
ﬂeQa{Lve function defined in an interval {0, a), where for simpli-
Clty\we suppose that &< oo, and let f'(x), 0<x<la, be the

\f‘i‘nthon equimsasurable with f and non-increasing (§ 9.42). We put

ff(t)dt pt<x 0<xCa,

1) # (i f) = Sup ——

and similarly define 9(x;f"). It is easy to see that for non-in-

) Borgen {1}, Zygmund [10].
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creasing f, and in particular for f*, the upper hound in (1) is
attained when ¢ =0. The following theorem has important ap-
Plications.

For any non-decreasing and non-negative Sunction si#), £ =0
a A i
@) [st00ande < [ 5800 den, N
0 o
Given a non-negative function g(x)eL(0,a)let e(y) = EQ)],

where E(y) is the set of points x for which g{xy> ,\ﬂi’er\L

t

& oy === 2 \
®) [gdr=— [ yde ()= [ e () ay
1 o @ +$7)
L”
the seco 'iDI ral being a Riemann-StieHjes,'i:hegral. When g
is ﬁ‘ﬁ‘ﬁ@egéfu e]%‘a'3’?:-'50t]r‘géqhation follows at gn¥e if we observe

that the approximate Lebesgue sums fgr\\the first integral are
approximate Riemann-Stieltjes sums for, the second integral. To
obtain the result in the general caséywe apply the formula to the
function g.(x) = Max {g (x), n} and \then make 7 + oc. The equality
of the second and third integral .féllows by an integration by parts
i we notice that ye(y)-0 a8y - oo, This last relation is, in
turn, a consequence of thelfact that ye (y) does not exceed the
integral of g (x) exteade@\over the set of x for which g (x)> y.

Let E(y,) ﬁnd:“'ls'(yo) denote the sets of points where
8(x;/)>y, and 6 (‘{?”) ~ ¥, Tespectively. Comparing the exireme
terms of (3) we See that (2) will be established if we show that
|E | <IE(yHor every y,. We break up the proof of this
inequality i'nté.\three stages.

() AGiven a continnous function F(x), 0 Cx<Ca let H
denote,\ € set of points x for each of which there is a point &
0 < &< X, such that F(<F(x). Then H.is an open set and is
8, &l}nf of an at most enumerable system of open and non-overiap-
\”p;ng intervals (=, 8:) such that F (e} < F(Bs) (it can easily be
shown that actually we have £{2) = F(Bs), but this will not be
required).
That / is open follows from the fact that ihe inequality
FR)<F(x) is not impaired by slight changes of x. Let (ax ) be
any of the open and nhon-overlapping intervals whose sum is £. Sup-

) Hardy and Littlewood i17); F. Rissz [7]
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pose that F () > F (&), and let x, be the least number belonging to
{2a, 3z} and such that F(x,) =3 [Fix)+ F(B:)]. No point { cor-
responding to X, can belong to (=, Xx,), for the points x of this
interval satisfy the inequality F{x)>» F{x,). Hence § <{#, and
the inequalities F &) << F{x,), F{x)< F{m) give F(5) < F{a).
Here we have a contradiction since the last inequality and the in-

equality ¢ << a, imply that a, € F, which is false. ~
(b) If E is an arbitrary set contained in (0, a), { E|> 0, i&en
12| ¢\
f_f dx <L ff‘dx. O
£ a h !

This is a special case of a more general resu}t? established
in § 2.42. An independent proof runs as follow'_ “Let f,(x) be
the function which is equal to f (x) T4 EHREI S BYeti&dRere.
Since f.(x) << f (x), we have Fiix) < fi(x) i}l\l\d:

I £]

. \ L€
[rax=[fiax= [flaxsffias< [ fax
E il ] g M

1

{¢} Let E;(yc) denote thp:géf of pgints where 0 (x; 7} = ¥
Having fixed y, we shall weite £, £°, £ instead of E (vo), E*(3)
-

El(y). If we put F(,&)\’": ffdtwyox, the set E becomes the
£ ) a

set A of (a), If {(hk:\ﬁ};)} ig the sequence of open and non-over-
lapping intervald\of which E consists, then, using the results
obtained in {a}/and (b),
3_& "\‘;\’" \E]
J 189> 3, e =, [fax>|El, [ fde>EL
a’k‘ E B

o N x
O Now s =1L [ f+dt; since the righthand side of this
\ / X B

equation is a non-increasing funetion of X, |Ef| may be defined

. 17 _
as the largest number x satisfying the jnequality ;f [t = v,
0

From this and the preceding inequality we infer that {E|< |EL3
Therefore, it ¢>>0, we have [E{(y+9|<|E(y+¢); and
making -0, we obtain |£ (¥} <|E*(s)|. This completes the
proof of (2).
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10.211. We shail chenge the notation slightly The function
which we denoted by 0§ (x;f) wilé now be written %,(x;f). By

f,(x; f) we shall denote Bup ‘ 1 ffdzf for x <t .<la If f, de-
g — ALk

notes the function equimeasurable with f and non-decreasing, then

d

f s {8,0x; )y dx < f s (8,05 /) dx, f 5 {0,055 )} < j" 5 40,06 FON

The second inequality follows from the first by a almple ’traﬁs
formation of the variable x. Let 8 = Max (8, 6,}. Ii i ﬁotdlfﬁcult
to see that the inequality 10.21{2) bholds for ithe new™ functwn 6
it we introduce the factor 2 into the right- hanfi side. For
$(0) = Max {s (), s (B} i s (8) + 5 (&) and so O

W W TdLe

s eanndx< [smm o axt [sio0n @;}zﬁ}: 2 fsto0e ) dx.

Thence, by a change of variable{ We obtain
If (2, b) is a finite interval ami’?

B (x:f)=0(xf a,b)= sup" 1 ff(t)a:r gt b,
ANE x — £k
then \

#
3{9 (xﬁt\} dx <2 [s LE. f () df dx,

where fY(x) isg ’L‘ke farchwn equimeasurable with f{x) and non-de-
creasing. \

1&& Theorems of Hardy and Littlewood ')
m:"\’{i} If felia, b), r>1, then 4(x; f)elta b) and

/ &

N e e Il

a a

This follows from the remarks made in the previous gection
aud from Theorem 4.17.

¥ Hardy and Littlewoad [17}; see also Paley [6]
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The example of the function f(x)=1/xlog?x considered in
the interval (0,a), 0<Ia <1, shows that, if Fe 7, the function
8(x; 17"y need not he integrable.

(i) If fel(a,b), then 0(x;|fheL® (a,b) for every 0<a <1, and
@ {f v fas) <4, f f\dx,
where A, depends on o and b—a only.
(i) I |f|10g+|f| e L(a, &), then §(x;|f)eL(a,b) ag&"
(3) fstx Fdx < Bflf logr (] + GO

where B and C depend on b — a only, W dblauh,braly org.in

it ts sufficient to prove (ii) and (iii) im\the case of functions
which are non-negative and non-increasing’ We may also sup-
pose that the interval (g, &) is of the fo‘lxm (O a). Then, applying
Hélder’s inequality,

e[l <2 -
e e ol

so that in the gen\a}al case we have (2) with Ao = 22" %1 —a),

To prov& (3) let f= jfdx J= fflongfdx we shall de-

note. by, Q\B constants which depend on a only. If f is non-
Degatl‘«@and non-increasing, the left-hand side of (3) is equul to

(4) f ffdt—-fflog—dx<!log+a+fflog+—dx

\ \; Observmg that f < Max (e, flogt f) < e+ flogt f, we find
that / << J4age=/ 4B, On the other hand, since the monotonic
functions @ (x) = (x+ 1) log (x+ 1) — x < (x - 1) log (x + 1) and
¥(y)=er —y—1< & are complementary funections in the sense
of Young (§ 4.11), an application of Young’s inequality gives

[2}’- 4 Iog+—1-~ dx < f(2f+ Dlegf-+1)dx+ fe'-'"» 10g™ tix gy,
IS X 3 it
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Since 214+ 1 « Max (3, 3f), the first integral on the right is
less than B,/ B.. Collecting the results, we see that the lefi-
hand side of (4} does not exceed BJ 4 C, and (3) is established.

Suppose mow that f (x) is of peried 2= and integrable over
(0, 2m). Let

l { 1 A Il’
Msfy= Sup L i ae=sap S i@l o
ps|tizn b g pazltjme by
for —m<Cx <= If we replace the condition 0 < |t1 éﬁ*\by
—9r ~x < {2 —x, we increase the upper bound and we obtam,

instead of M (x; f), the functien 9 (x;|f ) formed for\l’hte interval
(— 2=, 2r), and so \\

ww.dbr ﬂU‘{Hfﬂ(‘lﬂ;‘%”‘ < f s {8(x; 1f|,—2 27)} dx.

-3
l /

Thence we easgily obtain that “'::

{ivy The inequality (1) remaind frue if we repiace the interval

of integration (a, &) by (— =, ), J@e function 8 (%' [ by M1
and the factor 2 on the rzgfzr b)) 4.

(v} The inequalitiesq) and (3) hold if (a,b) is replaced by
(— = =) and 0(x; |f) bJrW(x f). The constant A, will now depend
oniy on o, and B a%@ will be absolate constants.

Applications “of the previous resulis to the theory of Fourier
series are based. on the foIlowing lemma.

(vi), @:\t/ (&, ), — =<t < 7w, be a non-negative function de-
pendmgQQR a parameter p and satysfymg the conditions

st‘ﬁa) f/(tp)dt/K 56b) f|za;/{t p)| dt < Ky

-~

where K and K| are Independent of p. If

Riep) =~ [ [ e+ 070,

then S‘;P Vi (x, P) | <L AM(x; ), where the constant A is independent
of f.
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Far let Fi{f) be the integral of |f{x 4+ u}| over the interval
C<Cu<l ort < u< 0 Integrativg the formula defining 4 (%, p)
by parts and observing that |F.(f)! < |2] M(x;f), we find

2%, p) | << M3 f) { f f f(%z ¢ piat =l g+ i~ T=;p)]}-

Integrating the integral of (5a) by parts and teking into ac-
connt (5b), we see that = [y (%, p)+7% (~7p)] <K+ K. Hedee
|2 (%, p)} < (2K, + K) M (x; f) and the lemma is established <\

it is useful to observe that, if £ dy/of is of constant'gg?gﬁ', and
if 7 (==, p} are bounded functions of p, then the ineqpaﬁty (5b)
is a consequence of (5a). This follows at ence if {we drop the
sign of absolute value in (5b) and inte“é}fa‘{[eg F%I:i%t;g?y‘m gt

if for v {f,p) we take the Poisson kernel B.{{), the inequal-
ity (Ba) is satistied; also (Bb) is ftrue, f{i*;,\th,(t}fdtgﬂ and
Pty = O(1). Therefore,

(vil) If N(x:f) s the upper bo’zz{zdéf If(r, %) | for 0 < r<C,
where f(r, x) denotes the Poisson Integral of an integrable function
F(x), then N(x;f) < AM (x; f),cwhere A Is an absolute constant,

From this and from (i) aud (v) we obtain:
(viii) The function iN:g}c; f) satisfles the inequalities

PES ]
/ N.’(x;\f} de <A, [ ifrds, r>1,
<2 g

(6 \7 Ny £ dx < A, [ ifidx, 0<a<1,

&

') fN{x;f)dxéBf|f|108+i'f|dx+c:

\ s
3

S

o0

where A, depends only on r, A, only ona, and B and C are abso-
lute constants.

The Fejér kermel K.(¢) satisfies (5a) but, as can easily be
shown, not (5b), The same may be said of the kernel X,(9),
0 <8< 1, which, besides, is not of constant sign. The kernel
K¥#), 0< 5«1, can however be majotised by a function which
satisfies the inequalities (B). For
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c{t)yn
L (r | £

where ¢(3) depends on & only. To prove this inequality, which
is due substantially to Fejérl), it is sufficient to observe that
Bty > te@ntor nt] <1, L3O > e @[t for nit| 21,
and to take into account the inequalities 3.3(2). The reader will
verify that the function 7 (Z p)= L3(f) satisties (5a); that- the
inequality (Bb) is also satisfied follows from the facix that
£ dIdt)jdt < 0 and that LY+ 5) = O(1). R
Let cri(x;f) be the Cesiro means of order & for Gﬁ-{f‘}: Observ-

@ |K»I<Lut = 51, a1, (f|<n,

|

ing that [ox; /)| < L [ f G+ 0| LB dt, we eivin:

(ix) I Nofss, i,, 081, is the uppep bound of 1s}(x; f)]
for (Q(r(11< acléx, the 'oﬁg(;c;f) <L AM (x; {i«{;ﬂ?ith A depending only
o & the functlon N;(x; f) satisfies ipegunlities similar to (6), where
the constants A, A,, B, C will now depend also on §%).

The theorem remains true for*s >> 1. This follews from the
fact, which is easy to verify (§3}13), that N;(x;f) is a non-increas-
ing fanction of &. N\

We return to the casé'ef harmonic functions f(r, x). If 0<%
we denote by S,(x) thepact of the unit circle limited by two chords
through ¢* at angles™s to the radins, and the perpendiculars
upen them fromithe origin, Let N{(x;f, ¢} be the upper bound
of |f(r, 9] fox(z= re®, r <1, belonging to S/(x).

(x) Fhere is a number A depending only om  such that
N A4S AM (x; f). The function N (x; f, 9} satisfies inequalities
simildP\o (8), except that the constants A,, A, B, C will now depend
alsaon .
7\ J It is only the first part of this theorem which needs a prOOf-
N\t z=ref r<1, is any point belonging to S,(x), and {=re®,
then

'} Fejér |10} If we replace » by n4-1 in the numerator of the last
ratio, the ipequality wifl hold for n > Q.

%} The thecrem remaina true it in the definilion of Nyl&:/) we sgp'

pose that # rans from O to = It suffices te medify the definition of LB
slightiy {see the preceding footnote),
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Fin o) = [ Fxt 87 ) dt, where 7(F,0) = - Pt + x — 6,
— T

The expression y (£, 5) here depends on the variable f and the
parameter { belonging to the region 50). That the inequality {5a)
is satisfied, is apparent. The left-hand side of {5b) takes the form

'\

1 / f-— Pt 4 8):df, where & =x —0. SBupposing, to flx xdeas,

that _.‘>0 we break up the interval of mtegrahon uﬁ‘o three
parts (— =, —§), (—£,0), (0,%), in each of which thﬁ ‘expression
under the sign of absolate valoe is of constant SJg"z, Integrating
by parts, and observing that P{(0) = O (141 —rJJ,\ﬁ\ o1 —r), we
obtain the desired inequality.

Preposition (x), suitably madified, &ﬂﬁ{h@%@ﬂ&éﬁr%(’é&leml
classes H2, p > 0 (§ 751

{xi}y If F{2) is a function feg’afar for [2|<<1, and if
el FYZ 00, 0Cr <1, p>0, rlxen ‘“nf.[N(x F, )] < A, 2, where

A; depends on 4 only. o

"

This theorem is a cgnéaﬁ'ueuce of (x) if p=2. In the gener-
al case we have F(2)A0 (2} B (2), where IB(2)yi« 1, G(2) is
regular and non-vgnighing, and pu(r; G) < ¥ (§ 7.53(v)). The func-
tion G7%(z) is regula\\ﬁnd belongs to A2 Smce talry GF d=w,(r; GY<H,
we abtain cHu{N{x, Gr2,9)] < Ay, and it s sufficient to observe
that the left-haud side of the last mequal:ty is equal to the expression
DN 5 G WEIN (3 F, ¢)]-

T "h;wst important special case of (xi) is wher ¢=0 and 4,
reducéb\ o a radius of the circle.

The theorems established in this section elucidate certain

mresults of Chapter IV, To prove, for example, that, if felr,
\r‘>1 then {f— a,]—0 (§ 4£.85), it is sufficient to observe that

|f (x) — sx{x)y tends almosi everywhere to 0 and is dominated by
an integrable function. Similarly Theorem 7.56(ii)) is an easy
consequence of (xi).
10.238, We conclude this paragraph by a few remarks on
the function f(x)= Sup [f«(x})], where
F. 3



250 Chapter X. Theorems on the summability of Fourler series.

Fe LTt —fe—p) s
Fix) = Mf vigit dt, 0<h<n,

f denoting &n integrable and periodic function. In § 711 we

showed that f(x) is finite almost everywhere, Completing the
results of §§ 7.21, 7.24, we shall show that

—~ — N\
W T<ARLS r>t RIFI<A,Mf], 0<a<y;
(NN
W [f]< BWM[flogt |F|]+ G O

Ny

where A, depends only onr, 4, only on =, and B and‘f’é}e absolute
constants. It is sufficient to prove the first of these inequalities
only, the proof of the remaining being similar. Let us put
{8) = f (£ + ) — f(x —1t); then O

2'\ v
_ ww“_r_dbraulilil' f.org.in 1 R 4.
fier)—~S (r, x)=¥ $:(£) Qr(f)dt*:_" J"PR*) RAt) dt = Gr{x)+ H{(x),

H TN

where Q/(f} = 7 sin #/(1 — 2r cos ¥ 7%, R,(£) denctes the ratio
(= r¥2tg Lt (1 —2reost 4490 and  f(r,x) is the harmonic
function conjugate to f(r, £}3 Since | Q) | < 1/(t —r), we have
FGAx) | <X M (x: F). Integeating by parts and observing that

~ «
ERA = 01) tor ted=7, and that [ 1¢% Rt dt=0(1),we tind
A\ l=r dt
that [H(x)|, and.so also |fi_{x) —F(r, x)|, does not exceed a
multiple of M f). 3
SuppeSeniow that fe.’, #>>1; then the function f(x)=/F(x;+0)
belongs o)L, and f(r, ) is the Poisson integral of f(x). Hence
|- Fual) — F (r, XY [+ F (%) | < DM (3 £ + M55 Db
wheére D is an absolute constant. This inequality gives
S LD (MCxs FI+-MOx; Y, W7 <D (M (e DM (5
o view of Theorem 10.92(iv), the right-hand side of the last in-
equality does not exceed a multiple of M,[f]14-IN,[f] and it suffices
to apply Theorem 7.21.

10.3. Partizl summs of &[f] tor fe it The theory of
summability of Fourier series by Abel's method, or Cesaro’s me-
thods of positive order, is in a state which may be described 88
satisfactory. The situation is adequately represented when we
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say that what we need there most are problems, that is inter-
esting problems. Achievements of the modern theory of real
functions have left mesns at our disposal which seem to be suf-
ficient to cope with problems of summability, although the latter
may in some cases be fairly difficalt.

The situation is different when we consider the behaviour
of partial sums. Several results have been obtained for the cop-
vergenee st individual points, but as regards convergencelo
divergence almost everywhere, our kanowledge is still\ very
scanty, Problems which suggest themselves o the beghin\é'r (for
example the problem whether &{f| must converge at‘one point
at least when f is contiruous) seem to be far from(Bejng solved.
It is true that in the last few years a vnumber 6fimportant re-
sults have been obtained, connected with the naﬁ}s of Kolmogoroff
and Seliverstoff, Plessner, and Littlewnadpi, Jadexrpukgnnch

more still remains to be done. ’:”\\'

AN\

10.31. 'Theorems of Kolmog(;réff 1), ILet f(x) be a func-
tion of the class L? and let s,(x)“be the partial sums of the
Fourier series AN

(1 a, +Z(&; €08 11X + by sin fx)
1S
of f{x). Since My[f <]~ 0, there is a subsequence {Su{x)} of
{sx{x)} which convergesd almost everywhere to f(x) (§ 4.2). We shail
now prove that ‘f(}s{m{} we may take a sequence independent of b

(i} If gmgtte > 0> 1, k=1,2, ..., the partial sums sw(x) of
Slf], fe Q, converge almost everywhere to f(x).

Agséries 3¢ is said to possess a gap (x,7) if €;=‘D\‘for
# < iS%. We shall require the following lemma. [f @ series L cy
mﬁ?;p&rtfai SHMS Sy, POSSESSES infinitely many gaps {my, ) such
At mlyimy, >3 > 1, and is summable (C, 1) to sum §, then Spm, and

N
\ 350 also S, converges to s.

Let s =10, §,+ 5, 4.+ $a = (2 +1) ax. Then
{2) {mi — my) Sy == Smp b1 + Soyta + ot Sy =

= (1t +1) S, — (Mg + 1) Oy = 0 (i) 0 () = 0 (1),

whence s, = 0(1) and the lemma is established. In particular

) Kolmogaroff (8 Marcimkiewiez 1]
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(i) If the Fourier series of an integrable function f(x) pos-
sesses infinitely marny gaps (m., mk) such that myiny T > 1| the
partial sums sm,(x) corverge almost everywhere to f{x).

Now, in order to prove (i), we aplit (1) into eonsecutive
blacks of terms nx <<n < mpy, 5, =0, including L 2, in the first
block; we then break up the whole series inte two, cne consist-
ing of biocks with even, the other with odd, indices. By the
Riesz-Fischer theorem, these series are Fourier series ciMunic-
tions f' and f" respectively. For each series the terms.éﬁfh in-
dices 1, are either at the end of op immediately preceding a gap,
and so, by (ii), the partial sums of the two seri€s\viz. s;,(x)
and s;(x), converge almost everywhere. The sagie is true for
SnX) = S () + si (%), N

(i) Let s ()= SEp | $z,(x) |. Lnder {{zs\}yypofkesz’s of (1), 5 (x}
belon s ¥ W P, sPEX M7, where™A, depends on » only.

Denoting by B, B,, ... constantSIZdépending exclusively on ),
we obtain from (2) that Sup |suNC B, Sup is.,|. Hence, under
the hypothesis of (ii), Sup | Sm 06} [ < B, Sup | om,(x); <0 B, M (x; f)
(§ 10.2(ix)). Therefors, if f’,f’.”,,‘s’,,k, Sz, have the same meaning as
before, n
$(x) < Sup | sh(x) L ASUp |81 (x) | < By M x )+ M (x5 £},

Mals] < By (N, [ (Y] + 0, [M (x5 05 < By (00, 1)+ % (£,

and it is sufficient to observe that, in view of Parseval's relation,
the last expyéssion in curly brackets does not exceed the sum

LIST+ D =200 £},

’1'0§32. Convergence of a class of trigonometrical
setfes ). An immediate consequence of Theorem 3.71 is that, if
“8¥d, + bl) log?n << ~o, the series 10.31(1) converges almost every-
\v}here. For from the last inequality and the Riesz-Fischer theo-
rem we see that the trigonometrical series with ecoefficients

@ log n, bxlog n, is a Fourier series and, applying the first part

) Kelmogoroffand Seliverstoft [1), [2], Plessner [4]. The
method of the proof seems to have been need first by Jeroach and
Weyl[1), to obtain mach weaker results.
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of Theorem 3.71 to it, we obfain the desired resull. Now we shall
prove a more general theorem.

(iy If the series ;; (@i+b3) log n converges, the series 10.31(1)

converges almost everywhere.

The argument which we shall use to prove this theorem Js,
not less interesting than the result itself, and may be used\m
many problems.

Without loss of generallty we may suppose that &, ﬂa = b
Let E.(x) and Hx), n=0,1, .., denote the partlal ~suihs of the
serieg "‘\

o cos nx =008 1 N )
Zyiogn Zalogadbraulibrary.org.in
respectively. Let n(x), 0 < x {2, be any mesnsnrable function

taking mon-negative integral values .axid ‘bounded above by some
integer M. If s{x) are the partial ‘sums of 10.31(1), and if the

series Y, {2, cos nx 4~ by 8in nx}y‘fbg r is &|g], then
2 o\
1 N
sv(x) ey [ g &) Egt— x) at.
NS

Puiting v = nf)s) mtegrating over the interval {0, 2rx), and
using Schwarz’s inequality, we obtain
\Y;

Mssﬂ(x)(x) dx
&
“\{ > j g(t)at f Enpoff — x) dx ‘ < My [} My [* [ Enelt — ) dx,]

A The square of the last factor is equal io

2 T o
_IW f dt [[E"(x){t - x) dx] l:f Efx{x')(t - x'} dx'] =
Lo iy L

l
)— dx f g &) Ennlt — 5y dt | =

2w 2w 1 b4
= [ f dx dx' {.‘ f Eney(x — 8) Eneyx’ — O dity
bo@ Lo

The expression in curly brackets is equal to fnlx — %),
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where m = m (x, ¥} = Min {n(x), 2 (x)}, and so the right-hand
side of (1) does not exceed

in in
J ] Ay (6 — 2 4 [ Hugery (x — %) } dx d’ =
©

oI N
=2 [ [ Huwy(x — x| dxdx.

[ ’,\:\

In § 5.12 we saw that MW [F/] = O(1). Hence, integfabing first
with respect to x' and then with respect to x, WP'@Q that the
vight-hand side of (2) is less than an absolute/Ggnstant A, and

N\
n . o < ) }11:2
®) l Lol < amper=als 5 @iiniog )

W .dbraulibrary org.in NS }

This is 2 fundamental inequaljtﬁ:\from which the theorem
follows comparatively easily. For jebdx{x) = Sup su(x), 0 < n <N,
(%) = Sup { — sx(x)}, 0 <1 < NoSince s,(x) = 0, the functions 3
and Yy are non-negative. B;{"éﬁoosing suitable functions 7 (x),
the inequality (3) gives M [on] < AMy[g], M [9a] < AMIg]. The
sequences {yv(x)} and {$n(x)} are non-decreasing and so, putting
D (x) =lim on(x), ¥ (HX1im ¢u(x), we have M I[B] < AM,ig],
M(F] < A Myl g]. ¢ '{fw’ functions @ and ¥, being integrable,
are finite almost “everywhere and, since @ (x) = Sup s.(¥),
¥ (x} = Sup (-5w(X)}, the sequence {s-(x)} is bounded for almost
every X, A"

It 0% denotes the upper bound of !s,(x) — s«(x)| for all
values\ofm and n, then 2 (x) < @ (x)+ ¥ (x}, and so we have
M (Y 24Mf4].

% To prove that {s,(x)} converges almost everywhere, let
)

S4r(x) = Bap [ $a(¥) — sa(x)| for all possible values of m > M and
Rz M, and let gu(x) "'ﬁg](an c0s nx + b, sin nx) ylegn. The func-

tion £y is the Q corresponding to gu, so that M (D] << 24 D[ Ll
In view of Parseval’s formula, Mslgn] >0 as M- oo, and 50 We
aleo have M {Qy]-0. Since {2u} is a non-increasing sequence,
we conclude that 9N {lim2u}=0, i. e. lim RQu{x)=0 for almost

every x. In other words, the sequence {5.(x)} converges for almost
every x, aad (i) is established.



[10.83] Convergence of a class of series. 255

(i) ff the series 10.31(1} belongs fo [% the partial sums
salx) of the series are o(ylogny for almost every X,

_For it ayyiogn=ah, by logn =14, =23, ., then

Y (ar 4+ #2) logn < oo, Hence the series ¥ (al cos fx 4, sin nx)

converges for almost every x, and it is sufficient to prove the

following lemma. f O <!, <l < .. »>00, and if the series

ojly -+ 103l 4 .. converges, then uy +u, + .+ .= 0 (I,). 1

Let Sp==tiy .. + 8oy Fa = Uafls 4 tggiflar + ... Taking\m

such that |r, <s for > m, and applying Abel's transfo;n(afib\n,
we have \

o ou : N
Sn S =2 Tl = Fuugs s + 3 rally — Loy) #rav s
ml -‘{k m+2 &
for #>m. The last expression does not exce¢d \2¢ /. in absclute
value, Hence |8 < |85y — Sm !+ |Sn wlerigtrbulibrarge dy gith 1
is large enough. Since ¢ is arbitrary, thé lemma is established.
({il) If the series 10.31(1) bezang;,fig'iz, the series
2 fn COB RX -i—b,, '5in nx
e’ yiogn

converges almost everywhere N5

Since the sequencée W, =1//logn, #=2,3, .. is conves,

(iii} follows from (ii) abd ‘the lemma established in § 3.71.

10.33, The {h}t}ems of the previous sections have been
extended by Littlewood and Paley io the case of functions be-
lenging to £74 %% 1. In this case the argumenis are more difficult
and require héw devices, We shall state here, without proof, the
most imgértant of the Littlewood-Paley results ¥). Let s,(x) denote
the Pa,l‘g?h sums of the series 10.31(1), which is the Fourier series
of a\ff,t'mction £ (x); then
NNy If felr, r>1, and if the sequence {ny} satisfies an inequal-
Y npyyine > 0> 1, k=1,2, .., the sequence {sp(x)} converges
to f(x) for almost every x, the function Sl:p | 8ny{x)| belongs to L.

) See Littlewood and Paley [} Delailed proofs have not yet
been published, but some indications as to the methods oi proofa will be found
in P aley [1], where similar resuits are oblained for the orthogonal system
defined in § 1.8.3.
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G If felr, 1<<r <2, then, almost always, sJ{x}= o0 (log ryvr
and the series
>dm co8 nx + b, sin ny

=, {log n)tr

converges.

(ii) If {=s} is any sequence of numbers of which each has one
of the three walues 0,1, —1, and iffelr, r>1, nagm>1> 1,\
the series

o Mpyy O\
2 & 3 (aqcosnx+ b, sin nx) M/
£=1 n=py+i O
Is the Fourier series of a function gel. N
We add a few remarks. €%

&

Proposition (i) is false for r = 1; more - preeisely: for any
sequence (M} of positive mumbers there is an integrible Junction f(x),
amiWawé“ééi::%};zaclgf@éf}r%k?éﬁﬁat Arpsffe == he @ gmar Sa %) diverges
almost everywhere, For the proof we refer the reader to Kolmo-
goroff {7]. Although the result is nof’stated there explicitely, it
is an easy consequence of the argument used.

Theorem (ii} is established farV < 2 only, so that for func-
tions fels, s>>2 and in pqrﬁ'ciﬂar for continuous functions, it
does not give more than Theorems 10.32(ii), (iif). It is not exclu-
ded that proposition (ii) igfalse for » > 2.

The meaning of (jii)\will be. understood better, if the read-
er compares this result with the theorems established in § 5.6.

10.4. Sumiability C of Fourler series. In Chapter II
we studied vafidus tests ensuring the convergence of the Fourier
series of a Jupetion f(x) at = given point, All those tests repre-
sent suffiefent conditions only, and the problem of finding a ne-
cessaryand sufficient condition (which would not be a mere or
less.disguised tantology) remains unsolved. The situation is the
game’ when, instead of ordinary convergence, we consider suin-
mdbility by an assigned Cesdro mean, 6. g. summability (C, 1)
Fejér's fundamental theorem (§ 321) gives a sufficient condition
only. We therefore change the problem and ask not when & [/f]
is summable by some particular mean, but when it is summable
by some mean or another, i. e. when it is summable C, In this
form the problem was first stated by Hardy and Littlewood, who
also gave a complete solution. This solution has been precised
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at certain poiats by a number of writers, in particular by Bo-
sanquet. A new approach to the problem was found by Plessner.

We begic by proving a number of auxiliary theorems which
are interesting and important in themselves.

10.41. Suppose that f(x) is defined in the neighbourhood
of a point X, and that, for small values of |Z|, ~

_1 1

1
Flo, +8) = e+ 1 @ t+ % LY S8 S el I o (Q’qj‘\&}l",
L\

{(r—1) r!

where the o’s are constants and = =¢,, >0 with ¢, Tlge,.n‘umber g,
L <l s < r, will then be called the s-th generatized @erivative of f
at the point x,. It is plain that, it f¥(x,;), s=1,2% { exiats and is
finite, then the s-th generalized derivative #,'exists and is equal
te fUNx,). For applications to the thegry « &rgg?ﬁqug [ series
it is convenient to modify this definition 4nd”to consider the cases
of even and odd sutfixes separately. Lot (t)=3(f(xs+0+F(x,—1)],
W) = § 1S (5 +8) — F (% — B), T bitHer

- _ _?’_!__ 2 _@U}—# —~2 2 Ey LI
) = o+t +"'+.,(2fé—2)!tﬁ k) G or

b (t) = B, £+ 53 £% 4 ‘_;_;[32{1 £ 4 (Borys + sf)ﬁi_"

) =B et o T * (2k+ 1)1
where ¢ +0 as £49/ and the @'s are constants, then B will be
called the j-th menéralized symmetric derivative of f(x) at the point
x5, and wiil JoMenoted by fiyix,)'). The existence of filx)
invelves that of f;_»(x,).. The following 'heorem i3 a general-
ization g\f:Theorem 3.5.

X} exists, the Fourier series of [(x), differentiated
terp\by term r times, is, at the point X, summable (C ), « >, to
phesvalue fi(x,)?). _

m‘;“’ We observe that, given 2s+1 nombers £4s 51y e s Bony there i85 2
N trigonometrieal polynomial 7(x} of order <s, such that T‘f)(x?) =&,
0 < j < 2s. This is easily seen when we represent T(x? in the
complex form and write equations for the coefficients. Since the

£k

1) The generalized derivatives were first introduced by de 1a Vallée-

Poussin {4].
%) de la Vallde-Poussin [4), Grenwall [3], Young [&

Zygmand {15].
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theorem is obvious in the case of trigonomelrical polynamials, we
may, by subsiracting a polynomial T (x) from F ), suppose that
f(,](xu):f{r_g)(xﬂ)——-...:0. It K%f) denotes the {C, =} kernel, and a3 {x)
are the (C, «) means of & [f), the (C. 2) means of S f] are equal
to {aF(x)}"), i, e. 1o

= " "\
W koo par 261 7 1y f (ot L
~“—_{f(z> g D= [ ek -1y f(—t)) 7 G

'\

In what follows, C, C, Cy .. will denote positive constants
independent of the variables ¢ and 7, The proof of ¢18 theorem
is an easy consequence of the following lemma: \\
. T &

IfO<r<a then (3 &j 1 koy | ae D, and (i) the ex-
in 7, \d

www . dbraulibrary .ot gt

pression e K0) tends uniformly to o i an\y inferval 0<v <t < x.

Let us take this lemma for granted for the moment, and tet §>0
be an arbitrary number. if Jo (= fonix) = .. = 0, then, since
2/xrt < 1, the expression Har (%] does not exceed

afr'altf\]\%:%j{t}idt:{)flfj:,;+B,

where v is so cHesen that l 2| < 8/2C for 0<¢ < 4. Then
1Al < C-B,’2C=’{~\’3;"and gince, in view of (i), B>0 as n- oo, we
obtain that |{{“;,(xo)}<’)|‘ <& for n2 n,. Hence {s2(x)7 + 0 and
the theorem{j& established,

Ife;’btﬁ, nLy=3 AE &, Abels transformation shows that
.,"' ) y=q
B D = [~ Ab ety y 6 g ey — e’), and so
3
M) u@nt) = — ettty )j’_i*%:t LB =sn1)
J=t (1 —_ ex':‘)j {1 _ er’i}s
To prove the lemma we Use, besides (1), the relations 3.3(3) and
the first formula in 8.11{1). Then

1 o
O = i S n =1, g
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5 )
Ve [_ e _i:_""'"_ ile—ms—tn —f pitatram| -
2A‘1 intt S — ity (1— g_ﬁ)q
- [ et g A plne )
- Ai 2sin £t j= 1(1_3—#)_: 28“1%1« (1 _—e:")_“_—

E A'J.—,c—l e—x‘(v-—rx—’.",)f
W

N ¢
=41 { \‘.‘\
- - i , N

2sinft-(1—e ¥y /

provided that the last series converges. So far thef Value of s has
not been defined. Now we take s so large that\the last series
differenliated r times is still absolutely ng%gghgr&w@g:@t
to suppose that s> =24r. Since Al = D(nT)Qand since each of the
expressions \*

L d" 1 ! d" et !
Cdr (E’Eﬁ@- (- e—f'riir_) o8 ( 2sindt (1 —e )1 )a
(47 0) s less than C,/87 "o r8 éhtain that A% {K2(£)}] Is less than

the sum of three expressmns

S \ Loont oot
G Z """" \ 3u§0 jo i’ Cspé; ptr—p 1

and the second part of the lemma follows at once. If £2> = 1/n, the
second S*ln} is < C, w7t and the third is <C;n*~'¥j£s7!. Hence

o/

Y e e <
’J"’r" K“(”'d“»‘f f [ o= ,-rﬂ“;',—“ ﬂ%‘“{;n] ¥

\ On the other hand, from the formula
Ko = {$ A+ Ay cost+ A2
we easily deduce that |{K* (£} does not exceed the expression

nr ABHA% < Gy, Tt follows that [t' (K@) | dt < C,, and we

obtain the first part of the lemma w1th C=6G+6GC
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10.42, Lef the series

(1) ta, + %’(a,, o8 71X + by, sin nx),

be summable (C,a), 4 =0, L2, for x=x, to sum s. fetr be
an integer > o -1, and suppose that the series (1) integrated term
by term r times converges, in the neighbourhood of x;, te a fumtfo)
F(x). Then Fuy(x,) exists and is equal te 5. ¢\
{ o
To fix ideas we suppose that r is even: for r oddAks proof
would be similar. Increasing a, if necessary, we mays suppose
that either r = = 2, or r=a+3 We have 7y "G
- 4%
2 Fix) = ao_"f_.{_(_ 1) ¥ T CO8 f1X + & ‘S\iﬂ_’w

2r| n=1 P

Withowhamsdbtagéﬁémt?"%%ay assume, {h}t' X, =0, s=0, g,=0,
We may also assume that (1) is a pqré}f cosine series; for the
sine component of (2) is an odd fungtion of x, and so jts rth
symmetric derivalive at the point\0-is equal to 0. Let as put
y{) = (cos u)fu’, s, = Sk= a, + ai%":-ﬂ‘f' Ty ooy Si = Sf—] + .+ Sﬁql,
Since s7 = 0 (n%), and so alsq = = o (n%), 5o =0 {n%),..., Abet's
transformation appiied (a4 9 times gives

FO)= - 1yme Ba oty = (= 1y 55 4ot 4 (.
= =1

where the (z + IPgt difference 4! is defined by the following
conditions: for, &y sequence {u,} we write Aup=d ity = sty — g,
digg=d (AR, Tt is well known that, if «(x) is a function
differentiable.j times, x, and %> ¢ are fixed numbers, and
Uy =u (,%Q\’+’nh), n=1,2 .., then

@RS B, = (— 1) b #N(xy 4 nk + 0 jhy, 0<B <19,
P

o thr—1 y
\Lgt Pixy= X (- 1)\*_'.’52_., ;L(x)=%?‘_*.@.
M har @) x

) SBee Plesansr, Trigonometrische Reihen, p. 1381. This result is agener-
alization of a theorem of Riemann § 11.21). The series (2) is cortainly
tonvergent if, for example, | Q|+ 18, = 0™,

Y) Into the right-hand side of (2) we might introduce an arbiteary
pelynomial of order {r—1); this woulq not affect the result.

¥ The proof of {3} will be feund in many treatises of Analysis. Sea . g
de Ia Valléa-Poussin, Cours d* Analyse, 1, p. 72.
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Then 7t (nf) = & (nf) + P (at)/(nty, and so
1;"'21 A
F()= — R,
| )= I s PR
whers A, = (— 1Y P EeT A2 p™ " R(8) = (— 1y 565 4% ) (mt).
Since, in view of (3), L AF T = Q") = O ("), the
series defining the numbers A, converge absolutely; it follows
that the series defining R (f} is also absolutely convergent. Thé\
theorem will have been established when we have shown that
R(ty=o(l) as £ >0, Let N=[1/t], 0<f< 1. Then ()
'\

Ny

e N oo .
RO =3 |24t =54 3 = U+
n=1 =1 n=ANil -

The function A(x) is regular in the whole plane, gznﬁlﬁé, on account
of (B), | J*(nf)| < C*t for a N, wtélert_a C, C,, ... denote
consiants independent of # and ¢, It toﬂt}g.f‘gf‘lif{g‘ﬁu&gé?%{’gﬁﬂ&d

AN 9%
C12¥1 301 6% = 2+ o (N*F1) = 0(1) a5 {0, 0n the other hand, an easy

calculation shows that |[v* 0G| < El',' ws?, and so | M) | < G,
for u » I. Using (3) again, we therefore obtain

V{C.,fa'_"‘i'l Z |S“!H"’=C2‘fa;7r-i_1 Z O(Ha_‘r)=Cgta’"’+1‘0(Nr‘“_l).
i =~ T =N

Hence V =o0(l), U+='K; o (1), and the theorem follows.

10.43. An im\nx'riiate coroliary of Theorems 10.41 and 10.42 is:

(1) Supposebidt the series 1042(1) has coefficients O(n*) for somek,
A necessary and'Sufficient condition that the series shonld be summable
C for x = R, to sum s, is that there should exist an infeger r >0
such thit,) if F(x) is the function oblained by integrating 11.42(1)
term by term r times, then F\x,) exists and is equal to s ).

e * When 10.42(1) is a Pourier series, the above result may be

N

\&tﬁted in a different form. .
Given a function g (£), defined to the right of £ =0, we shall
say that the number s is the (C,7) limt of ¢ (¢) as ¢ -0, if

{
(1) tif?(u)(t—u)f—ldu—m as  t+0  (r>0)

'} Plessner, ioc. cit.
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A more detailed discussion of this notion will be found in § 12.3.
The relation (1) will be written (C, o) »s. If (C ) -5
for some a, we shall write Cg(t) »s

(i) A necessary and sufficient condition that the Fourier ser-
ies of a function f(x) should be summable C, Jor x=ux,, to the sum
T %ok 15 (C) 0xf) » [ (xa), where oo (t) =+ [F (%, + 1) +/x = O]9

Let 10.42(1} be € [f] Since &[f] at the point £ = x, {8\
the same thing as & [¢.(¢)] at the point £ =0, we may assumie
that x, = 0 and that f (¢} is an even function of t; we also &ssiime
that f(0) = 0. Fourier series may be integrated term .h} term,
and so, if F{x) is the result of integrating & [ f ]/ v\¢imes, we
have an equation

L &
@ FOP® = S o @) ¢ <afe an,

1 \
wherewﬂ‘{@}qgl;flﬁlélb;ggﬁ?g i;élorder <r— 1,"51}\1(1 7 (1) = g (8) = f(a).
From this we see that, if (C, ryo (f)—»O:ﬂs\taﬂ, then F,)(0} exists
and is equal to 0. Conversely, if F,,(@))éxists and is equal to 0,
then F{)=o(#}+a polynomial‘of‘, order r — 2; since the right-
hand side of (2) is, in any case, o (£—1), it must be (¢, i e,
(Cr)eo(f)>0. To complete theproof of (i), we apply ().

Proposition (ii}) may he precised as follows.

(iif) If (C, w) PP (%) a5 £ 0, then S[F] is summable
(C,B), for x = x,, to\tkg’wme F (%), where 3> 22 0.

(iv) If €{fNs summable (C, ) to the sum Flx), for x=x,
then (C, ) 040 (x,) as § -0, where p > — L a>f4+ 1.

For thej\f;roofs we refer the reader 10 B osanquet [1], where
also a Z{*}hé’r bibliography will be found. Here we intend to apply
propositten (ii) to obtain an important result due to fHardy and
Littléwiood. For the proof we require the following theorem:

2\ J1044. 5 ¥ Un 18 finite (C.a] and summable (C,8), o> — 1, then it is
summable {C, x4 8)  for any i 02,

We may suppose that B—a.l § 0<li=1, for the general result ean be
obtained by repeated application of this special case. Amsuming, zs we may:
that the sum of X, is 0, we have to prove that, with the motation of § 3.11,

212 L0 Now

Y Hardy and Littlewood 7
® Andersen [1].
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# [} ”
SP=SaAnG=3+ 3 =P+  (h<i<i.
k=0 k=0 p(nf]41

Gheerving that |Sfi‘{C,k“, where ), €, .. denots constants, we have

'K

10, < - AT =Cn® A~
k:[nE]J,—I
(Sinee 97>4 the first inequality is true for x <0 also). Hence, if ¥ is sufiicientiy .
near i¢ 1, we have |Q, !;’AGM %e, where £ is arbitrarily given and AT
Having fixed %, we shall prove that P, =o(na+a); for, making Abel's transfqrniﬁi’bn,
{) il \ o
|1P,) ZA;E S o < a7 F o™ KO =

k=0

N { &
= (P 0 (r* D 0 () < e ‘4"‘*‘}‘

for n 2> n,. Hence ]sa+°ma+a|<e for n>Max(ﬁ0}fQ)€lb;If l{ s thboTeRi 16
astablished,
A\
1045 )y () If [ is non-negative, had if 2{f)]is summable C
at a point x, then S{f)] is summable (C‘ §) af that point, for every
positive e, &N

(i) If f =0, a necessary arzd suffsczent condition that & [f]
should be summable C at a poink x, to f{x), is that (C,1) pd?)~>f(x).
Under the hvpothesm\of (i), we have 10.43(1), with ¢(&)=gp:(#),
for some r > 0. Su\Q ¢+(4) 3> 0, the left-hand side of 10.43(1) is
not less than
i

f Px(u) (t £ IL)"I di > r2 fnp,(u) du, i. e, —fcy,,(u) du = 0 (1)

Let *x(0§ f|f(x+t)+f(x—t)—2ﬂx]|dt In § 3.8 we proved

that ' any pomt x where &) = o (1), 5[f] is summable (C, a),
?9 to the sum f(x). Exactly the same argument shows that, if
\z(f) = O (1), then & [f] is inite (C, «) at the point x (it must be
remembered Lhat 9.{f) has a slightly ditferent meaning in § 8.3,
viz, f(x r+ t) +f(x—£) —2f (x)). Since the conditions () 2 0

and ; f',?_\,(g) du=0(1) imply £{t)=O(1), E[f11s, in our case, finite

) Hardy asd Litiiewood [5).
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(C, o} and so, in view of Theorem 10.44, summable (C, 2+ 8 for
every a«>>0 and &> 0. Putting 2 4 6 = =, we obtain {i).

We write .(£)=9({f}=D,(f), and denote by @), £=1,2,..., the
integral of @x_,(x) over 0 u<f. The relation 10. 43(1), with S-“f(x),
may be written @,(¢) = f(x) //71, and to prove (ii} we have to show
that @ () =~ f(x}¢. Since QD;,(t}, k=1,2,.., is a non-decreasing
function of ¢, proposition (ii) follows by repeated application Ok
the following lemma:

\

Let s(&), t 2 0, be an everywhere differentiabie frfmjwn of i
If st} s non-decreasing and if s(£)~ st* as f s, then s&l)‘::: sa* L,

Let 0<<8<C1 be a fixed number; by the mean# value theorem,

S
(1) (1 - 0) £5'(88) < 5 () — 5 (0f) < (1 < QDD
Siness dBrmus Y- Fosglin— 6% £%, we obtaiy from (1)
T
. §'(8) NN 6%
Iim ——— = 5757,
R
—  $(05) 160 8 () 16
lim - - AV S
me geet % T (1—a)arl (1 e Tim =t 0 Dyt

Bince % may be taken{ds near to 1 as we piease, we obtain
lim §'(6)/6* 7 > s, oy SB/E < 8a, 0. e, () 7 5257,
It is plain tha® (i) and (ii} hold when f is bounded below,
and so, in partienlar, when f is bounded.
‘\
10 46. Mlsoellnneoua theorems and examples.
1. \KIEL’, ¢>>1, and if s5,(x} are the pﬂl’llal sums of & [f], then

L 3 L
™

R U. 2 MA—s, OH 1
N n —’,—1

/%N S Y=
\f‘;l' every =0 and almoet avery x. In particular, $,(x) = o {log n) for zlmost
every ¥. Carleman [2).
[Use the equation €™ =1-4%u-.. and argue as in § 10.11.
2. I fel® and s(x) are the partial sumse of & [f], then, for almost
every x, the sequence 1,2, 8,.. can be broken up into two complementary

sequences {mk} and {nk} {depending in general on x} such that s, (x]_,f(x).
I 1/n, < o

[Use the lemma of § 10.11].
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3. A weries Zu, iz said to be absolutely sammable A, if the function

g{N==X iy #" is of bounded variation over 0«7 <1, Show that, if 5 la,t<len
then Xz, iz absolutely summable A.

4. &[f] is absolutely summable 4 for x= x, provided that either (i) f
eatisfies [¥ini's test (§ 2.4) at the point x;, or (ii) f(x) is of bounded variation
in the neighbourhood of x,, See Whittaker {1], Prasad [2]. ~

8. Let s,(x} and ?,,(x) denote the partial sums of §[f]) and & [f] Jespec-
lively, and suppose that there s a function g(x}pﬂ,ge.-'_ such that s,(x} 5= *g(x]:
n=0,1.2,... Then (i) thete is a function #(x) belonging to o or everyt% and such
that s, (x) <A {x), | 8,00} <R (x). Moreover, (if) if fel’, ge.’." r>=1, then
hekr (i) if flogt|f|el, glogtlgicl, then hel. ..‘
For this and the following theorem see Paley, sqm Zygmund (2]
6. () B |£1<1, and s, 4 x)>—A, Olxsl2r, n=0,1,..3 wiere 4 is & constant, then
there is 2 constant B B(A) such that s, {() <" 8. {li}J8f{x) is continuous and, for
any =70, we have s (&) > f(x)—¢ n zn{e), Oi\t dﬂ}lﬂﬂﬁlﬁ‘ﬁj‘]},@ongei'ges
uniformly to f(x), 2\
. Let fa,| be a positive decreasing séqﬁence guch that {na,} is monotonic
and Xain e let Sd{x) snd t,{x) denote the partinl sums of the series
La,cosnx and Ia, sinnx l‘espeetlvé]g, then the functions s(x)_Supls (0]

and £{x) = Sup | £,(x}| are both‘l'n{egrable
n RN

8 I a, and &, n='1’:2.....' are the Fourier coefficients of an integrable

function, the partial sums\qf the series
)

734, Cos X \qm nx = g, sinnx — b, cosnx .
3 ﬁ«, ity 4> 0)
n=1 (log ) n=t {log )

can he mn;aﬁz}d by integrable functions. For 8 =0 this is no longer true,
2 '\ =0, k=1, 2 ..., and if the series Za,sin kx is the Fourier series
of ab dad functmn flxh, the partial sums of the series are uniformly bound-
ed; i¥'Als continuocus, the serles converges unifermly. Paley {7].
\ 3 {Let 2,(x}) be the first arithmelic means of the series considersd. To _
o (PE0Ve the fivst part of the theorem, ohserve that, i} f(x}! < M, then | FaglX) i <2 M,
\ S50 < 4n M (§ 7.31), and so, taking x =0,

in &
1— )kak < 4Mn.
g1 2n+1

Taking the first 7 terms on the left, we obtain a, - 2a,+ ..+ ne, < 8Mn, and
it is sufficient to apply &.13(1)].

10. Theorem 1042 holds for = fractionsl and > —1.
[For —1 < a0, r =1, the theorem was estabhshed by Hardy and
Littlewood [1]. The genaral resalt can be obtalped by combining the

Hardy-Littlewood argument with that of § 10.42].
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11, The tesults coneerning summability C holds, mutatis mutandis, for
Fourjer-Stieltjes series; in particalar, if F(x) is non-decreasing, sammability €
involves summability (C, s} for any > 0; a necessary and sufficient condition
that & [4F| should be summable ¢ for & = Ko i8 that Fi ,(xg) shoald exist.

12. Power series on the sircle of convergence may be comsidered as
trigonometrical seriss, so that Thenrem 10.43(i) remains true for power series
- N
(1) Zﬂn ginx, A o
= 2\
It may however then be stated in a stightly different form, viz. itiij};]ds if by
F{,}(-"o) we mean the r-th wnsymmetric generalized derivativp,@efined at the
beginning of § 1041. Plessner. Trigonometrische Reiren, g, 1382; see nlso
Hardy and Littlewood [7]. ) '\\
[Thearem 10.42 holds if o Z—1,r> a1, and F{;:;{}g) is the r-th upsym-
metric generalized derivative, provided that 10.42(1) 38 of the form (1)].

13, If 10.42(1) is the Fourier series of s bog{\ﬁﬂfl funetion f(x), the con-
jugatgreridbrisulibranabbe €10 and only if i i summable (€, <) for every
t2>>0. A necessary and sufficient condition tl’faﬁ Z1[/] should be summable C

for = x, is the existencs of the integral{ )

_l ek BS it
S ety

which represents, then, the Soa of E[f] for x==x, Prasad (3], Hardy

and Littiewoond [18]. &

(To prove the firshupart of the theorem, we show that the difference
3.32(1) is bounded for Avery r >0 (that it is bbunded for 0 < r<1, was im-
plicitely proved in(382). For then 7(x,)— =%(x;) — Q1) for every +>>0 and
§2>0, und it is sl{ff}éibnt to apply Theorem 10.4¢. For the second part of the
theoram we f}ie:l‘;tﬁﬁ reader to the papers quoted 1.

_—

'}y A theory of summability ¢ of the series conjugate to general trigontd”
metricul series will he found in Ples sner, foe. cit.
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CHAPTER XL

.\:\'
O
. Riemann’s theory of trigonometrical series.

11.1, In the previous chapters we have, al{g@t:’exciusively,
considered the behaviour of Fourier series. NOW we shall prove
& number of theorems concerning the propertiesibfdvigormmy etripih
series K¢ NG

. A\

(1} ig 4 21 (an cos nx £ sin n1x)

with coefticients tending to 0, buf otherwise guite arbitrary. The
fundamental resuits in this in‘e’ld are due to Riemann, and these
results, with their subsequen't‘ extensions, constitute what is now
called the Riemann theéry of trigonometrical series. The chief
results of the Riemaum-theory concern the problems of unigueness
and of localization for trigonometrical series.

In what_follows we shall suppose, unless olherwise staled,
that the coqfff(;}éhts of the trigonometrical series considered tend
ta 0. ,,\‘;\"

1,12%:’; The Cantor-Lebesgue theorem. In the sequel

we shall frequently use the following notation:
NS
m\./

\ ) 71‘&0 = Ao(x), dncosnx + bpsinny = An(x))

b, cos nX — an sinnx = By(x), n>0,
A(x) = p, cos {nx 4 «,), where pa = At b s
The following theorem is called the Cantor-Lebesgue theorem:

() If An(x) tends fo 0, as n - =, for every x belonging fo
a sef E of positive measure, then ap-»0, ba-r Q.
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For, if p. does not tend to 0, there exisls a sequence xn, <n,<...
of indices, and an &> 0 such that p,,>¢, £=1,2 .. From this,
and the relation p,cos(#x+,)—-0, we obtain that cos{n xta, )0
and, 4 fortiori, coa*(nkx-l—a,k)—vﬂ for x ¢ E. The terms of the
last sequence do not exceed 1, and so, by Lebesgue’s theorem on
the integration of bounded sequences, the expression

{1) fcosz(nkx+ tp)dx = 4 f de 4% [cos 2 (ne X 4 oz,) dx
£ E £

L X
2N\

Q.

N -
tends to 0. BSince the numbers i[coa 2n;, % dx, 1 f.sin 2nx dx
T E :gm’, )
are Fourier coefficients of the characteristic fumttion of £
they tend to 0, and the right-hand side of~the equation (1)
tendatp dbriliBery Bidancontradiction proves\‘the tbecrem. As
corollaries we obtain the following propesifions, the second of

which contains the first as a special cade!

(i) If the series 11.1(1) corzfzvergeé in a set E of positive meas-
ure, then a, -0, b, + 0. o\ ¢

(iii) If the series 11.1(1). 48\ summable (C,&), k> —1, in @
set £ of positive measure, them a, = o(n*), by =0 (n*).

To prove (iii), we ofiferve that a.n—*cosnx -+ b, n* sinnx—0
for x € £ (§ 3.13) and¢apply (). From (iii) and Theorem 2.221 we
tnfer that, in the ‘géneral case, the method (C, %), & <1, is too
weak to sum Fomurjer-Denjoy series.

11.12. A géneralization of the previous theorem. Given
any sequp.@cé of real numbers #,,4,,.., and a number —1<<f <1
we shaliMdenote by E, the set of points in the interval (0,2m
for whtch cos(2x+ o) > 8 We have |E,!=2%, where the
poditive number 6 is equal te (arccos B)/x, and so 'E,! depeads

“ah”’B only.

For any infinite sequence n < n,<.., and fixed B, the product
E=E; E, .. is of measure 0. Clearly we may omit as many
factors in the product as we please, since this only extends E.
In the first place, we observe that, if S is any finite systen of
intervals, then [SE.|>8|S| as » + oo. Now let 800, <1, my = s
and suppose that we have already defined m,, my, ..., 74— i
St~1= Em, Em, .. Emy_;, we can find a number m,>> m,_, belonging
to {a} and such that |Si—jEmy|< 8, |Ss| Hence, putting
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St = Em, Enmy oo Emy, we have [S] < 2x8%.  Therefore | Em, Emy...]=0
and, & fortiori, £l =10,

Qets such as the set £ which we have just considered, will
be called FH-sets?). Every H-set is defined by the sequences
Ry fyy vee s Fay Fyy o (the second of which we tay denote by o, o,,..
simply) and the number f. If m=3% @ =0, k=1,2,.., and
B=—1, we obtain Cantor’s ternary set conslructed on (0, 2.

We shall say that a set is a Hset if it js a sum of a finitg™\
or enumerable sequence of H-sets. Since every fi-set is closed
and of moeasure 0, it is non-dense. Therefore sets of tgpé‘.}fa
are of the first category and of measure 0. O

We shall require the following lemma. T

4
If {a,) is an arbifrary sequence of real numbersgq’d <y <.

an arbitrary sequence of integers, then, excepl erﬁ‘apfg[o{ x belong.-
ing to a set E of type H, we have lim|cowﬁ§§ll?ﬁ ;ng:m gmn

It 0<y<t and if |cos '(flkx-i—}ij?\é 1, then, & foriiori
cos {1y % ++ 23) > — 7. Let G denope\Jho set of x such thal
cos (1t +24)| <{7 for 3>, From what ‘e have just said it follows that
G (C FD, where F(V is an H-set\Therefore GO = G + G-
is contained in an Hs-set“aﬁif the same is true for the set
E= QU4 GG, outside which we have 1im | cos(mex-tap}|=1.

Now we are in a\"position to prove the following theorem
due to Steinhaus. o‘f:’

Except perhaps in a set E of measure 0 and of type H,

m | a4, cos nX + basinnx Ei = lim l/ﬂazx + b; ).
(e 1t
E{“‘.\}i;,(x) = putos (nx + ), and let {ne} be a seguence such
that anl' g, = limg,. 1f £ is the set £ of the lemma, then oul-
sidey E we have
\ 92 T | Au() | 3> [im | Agy(%) | = 1 pry = lim 22,

i. e lim!An{x)| > lim p.. Since the inverse inequality is satisfied
for every x, the theorem follows.

. i 1].
1) These sets were introduced by Raje bman o H wa
®y Yteinhaus (8] proved that (B :0;. that £ is of type /7. ¥ &

shown by Rajebman [1].
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It is plain that the Cantor-Lebesgue theorem is a consequence
of Steinhaus’s. Since H -sets are of the firast category, we obtain,
in partieular, that, if A.(x) tends te O in a set of the second cate-
gory, ther a, -0, b, >0,

11.2. Riemann’s theorems on the formal integration
of trigonometrical series?. Given the series 11.1{1) with,
@p, b, + 0, consider the funetion

o - 2 % \\
& Flo =1, gz~ 3008t bastn e (8

A=l n? L

The series on the right, which is obtained by integrafing 11.1(1)
formally twice, converges ahsolutely and uniformlx{\atid so F(x)
is continuous. It will be readily seen that \Y;

wwwedbrauljbrariorg.i BN . P
@ FEEMTFEE Y ar ey 2 win it
45" = vonh

The numerator of the ratio on lheiieft will be denoted by
4*F(x,2h}). The upper and lower Mimits of indetermination of
LF (%, k)jk*, as k- 0, will be demdtéd by D°'F (x) and D?F(x)
respectively. The common valite of D?F(x) and I?2F(x), if it
exisis, will be denoted by DE'F(x) and called the generalized
second derivative of F gtlhe point x. If D?F(x,) exists and is
finite, we shall say\gattthe series 11.1(1) is, at the point X

summable by Riemann’s method of summation, or summable R, to
the value D F (x)sy\/ :

AS

iy If 11{1,(1), where @, b, 0, converges at g point x 0
sum s, it ispalso summable R to the same sum.

It .'ié\sufficient to show that A°F (x, 2/2;),.*'4:’73 tends to s for
every.8equence {#;} of positive numbers tending to 0. Let us put
Au‘"i;éf}1+---+z4n=5m (sin® B)/*=u(k). Applying Abel’s transformation,
We/see that the right-hand side of (2), for i =/ is equal to

&) ésn A (nh) — u ((n + 1) 2}

Y Young [14].

) Riemana [1}. Proposition (i) of this sectfon i a special case of
Theorem 10.42, but we prefar not to use that resalt.
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. Here we have a linear transformation of the sequence s,-3,
and, to prove that (3) tends to s, it is sufficient io show that
the Toeplitz conditions of § 3.1 are salisfied. Conditions (i) and
(i) are obviously satistied. To werily (iii} we observe ihat

on - (n+1)h‘_ =
@ S —ulnt <SS [ lewld=] e d.
f Y =0 n,‘f 0 p
and thai the last integral is finite. A
Theorem (i) may be generalized as follows. K N

(i If the series 11.1(1) has partial sums 5(x) bqqﬂdéd at x,
and if s (x) = lim s,(x), 5 (x) = Tim sa(x), then the nf;rgﬁer;’ D*F ()
and DPF (%) are both contained in the fntemal"’p\—- k8, s - k3),
where 25— § (X) 4+ 5 (x), 28 =5(x)—8 (xy vawdlbiraisl varghoo futa
constant. ) \\

This follows from § 8.10%, if fo'r‘k':ke take the upper bound,
for all {#;}, of the sums on the le’f..t ‘ol (4).

(i) If an and by tend to 0 then

..:_~‘ o -
g FOrontPle—dRtFG o 3508
44 n=1 nih
as f - 0. '{m,\

It is again altficient to prove (5) for any sequence {hiy of
positive numbers:tending to 0. The series in (B} is & linear trar‘ls-
formation of\thé sequence A,~0, and 80 it is sufficient to verify

 Toeplitz’s Gonditions (i) and (iii) (condition (D need not be tested).

' The fisitt;}f'them is obyiously satistied. To prove (iii) we observe that
NN sin®nh; T | o 1IN

:’\(.6’JI &; +n='1 ?}z"-_‘ < +n§ _r;:“_k_(-_l- hﬁN+l?E< (N4 1) b+ 1N

0
\ s

If we pnt N =[1j]+ 1, then 1h < N < Hhit1 and the right
hand side of () is less than & for ih:! <1, This completes he
proof.
Tt is plain that (5} Is satisfied uniformly fn % .
The relation (5) is satisfied at every point X, irrespectively
of the convergence or divergence of the series 11.'1(1). If. G (x)
i is the sum of an arbitrary trigonometrical series with coefficients
0{n—?), then 4§ (x,2h)jdh -0 for every % and #»0; for G may



272 Chapter XI. Riemann’s theory ol trigenometrical saries.

be considered as the function F corresponding tc a trigonome-
trical series with coefficients tending to 0.

It for a function F{x) we have 4°F (x, 4)i# >0, then F will
be said to be smooth at the poiot x,. For, writing 42 F (x,, A)/R
in the form {F (x, + &) — F (x,)}/h — {F (x,) — F{x, — f)bik, we sea
that F cannot have an angular point at x,: if the right-hand and
the left-hand derivatives at x, exist, they must be equal. QY

11.21, Fatou’s theorems. Instead of the funct;on\F*{x)
defined by 11.2i1), we may consider the funetion O

=a,sinnx — b, cosnx 4‘:.’},
(1 Lixy=Llax+ Z "

fl ¢ ¢ ?
obtained from 11.1(1} by a slngle integralion. Then

www.dbraulibrary.ofg.in
Lxtb)—Le=m_, ZAJ\x) (ﬁﬁ‘fﬁ)

2k

The trouble is that, in the generta] case, the series in (1)
need not converge everywhere, evenif 11.1(1) eonverges for every x
(a2 simple example is provided lay“ the series I (sinnx)/log ), and
this makes the function L (x) miuch less convenient in applications.

If L(x) exists in a peighbourhood of a point x, and if the
ratio {L(x, + &) — L (x, <M)}/2k tends to a limit s as 7 -0, we
shall say that the serrés ’11.1(1) is summable by Lebesgue’s me-
thod of summation, 0 Eummsble L, to the value 3, at the point X,

() If a, and~b, are o(1n), a necessary and safficient condi-
tion that the seh}es 11.101) shouid converge, af a point x, te sum s,
is that it sko’bid be summable L to s).

In ‘New of the conditions 1mposed upon 4 and by, F()
existg for'every x. Let s,(x) = A, 4+ A, + ... + A,, N =[1/A]; then

O Lix+m—Lix—h)

% .___S
) 2%
b @ sinnk sin nh
=Y a4, (300 _ smat :
Z ( o 1)+ 5 a, Pt o

LEF ] n

The terms of Q are o(2-*4~"), and so Q=o(N-th~")=0(1). Bince

) Fatou [1]. In this proposition, as weil as in {i) below, the number
& may be infinile.
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(sinal/e—1=0(@)=0() for [«| <1, the terms of P are k-o(l),
and P = 0{Nh)=o0(1). Therefore P+ Q=¢(1), and, in fact, uni-
formly in x, and the theorem follows.

By ihe Riesz-Fischer theorem, trigonometrical series with
coefficients ¢(1/n) are Fourier series.

(ii) ff an and b, are o(1/n), and if 11.1(1) is the Fourier series
of a function f such that f(x)-+s as x-x,-+0, then the series
canverges at the point x, fo the value s.

(i)} I @, and b, are o(ijn) and if 1L1(1) is 3 [f], wheref)

s continuons in an interval a < x < b, then the series cowerges
unifermly in that interval.

S

To prove (if) we observe that, at the point xo,'the. fanction
L{x) has a Tight-hand derivative equal W\ﬁuu%'flﬁﬂlb@&i;i is &
smooth function (§ 11.2), the left-hand derivative afvx, exisis atid
is also equal to 5. Heace {L(x,-+ 4}~ L{x #A)}/2h~s, and so,
by (1), sx{x)>s. X \

Te prove (iii) we notice that, if 2- 0 then {L(x+A)—L{x)}/k
tends to f(x), uniformly in the interyAh(Na<x < a+ (6 —a)
Since 4°L (x, A}k -+ 0 uniformly inhx (§ 11.2), we obtain that
{L{x)— L{x—)}/h-f(x), and so. 280 {L(x+h)—L(x—h)}2k~f(x),
uniformly in /. Similarly we proxe the last relation in the remaining
part of (4, &), and it is galficient to observe that the left-hand
side of {2) tends to 0 u&i’(ormly in £

11.3, Uniquénb:ss of frigonometrical sertes. In previous
chapters we haye learnt to associate with every integrable and
periodic functian’ f{x) a special trigonometrical series — the Fourlt.;-r
series of f'(#) — which, as we have shown, represents f(x) in
various ,}:v{ays. It is natural to inguire whether funetm:vxs can.be
represented by trigonometrical series other than Fourier series.
THig Jproblem has many aspects, according to the semse which
we assign to the word ‘represent’. The problem of the converg-
ence, or summability, in mean was discussed in Chapter'IV.
In this paragraph we shall consider the representation of functions
by means of trigonometrical series which are everywhere conve:rgent.
The following results are fundamental for the theory of trigono-

metrical series,




274 Chapter XI. Riemann’s theory of trigonometrical series.

() If a trigonometrical series converges everywhere to (), the
series wvanishes ideatically, i. e. all the coefficients are equal to 0.

(i) If two trigonometrical series converge fo the same sum
in the interval (0,2x), the series are identical, i. e corresponding
coefficients in the two series are equal.

(i) If a trigonometrical series converges in the interval ©,2r)
to an integrable function f(x), the series is S[f).

Of these theovems, (ii) follows from (i), and the latter(ls,
in turn, a consequence of (iii). Theorem (i} is due to Qapntor;
(iii) was established, in the case of f bounded and intgg;a‘ble in
the Riemann sense, by Du Bois-Reymond, and in the general
case by de la Vallée Poussin?). R&Z

The most important step in the proof of ({{if\will have been
achiwq,‘mlﬁﬁ.al}g,v&ghﬁwn that the functi{n, F (x} defined by
11.2(1} satisfies an equation \\ -

x ¥ '4
(1) F(x)=_[dyjf{t)dt-i—Ax—}-S,:l{A,B constants)

L. e. that the formal integration pfiihb series 11.1(1) corresponds
to the integration of f(x). ForlMet F(x) = F(x)— 1/, a, x% it is
clear that the series 11.2(1),.withont the quadratie term is < [Fi)
The function F(x) is a sgefQ‘nd integral and, as may be seen from
11.2(1}, a periodic functidn) Let us put 2¢, = g, — t8, and write
S[FA] in the complék Morm, Integrating by parts twice and
observing that F(x} ‘and Fi(x) are periodic, we have, for 7 #=h

AN 1= =
e pemdyme [ e g —
(nt 2z 2z nt;
,s\ 3 I Fan 1 i
3 :’I__ _ _ 1 inx __ . ) —inx
" y .\': 3 2ﬁ n"‘;‘,[ [f ¥ an] e dx 2ﬁn= [ffe dx,
\ \‘“ in
i. e. Cn:‘?:l'“‘[fe fax f
&

) Cantor [i), Du Bois-Reymond [3], de la Vallée-Poussin [3)
Denjoy [4] showed that, with a suitable definition of an integral, more

general that that of Lebesgune, every trigonometrical series eonvergent to a
finite sum is a Fourier series.
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To find the same formula for ¢, = i a,, it is sufficient to observe
that the function Fi{x)= F(x}— 14, x is periodie, and so the
integral of Fy(x) = F'(x) —~}a,=f(x}—1a, over the interval
{0, 2r) is equal to 0.

11.31. We shall now prove a number of lemmas, which give
a little more than we actually require,

() If a continuous function F(x), a<x<b, satisfies the
inequality D® F (x) = 0, except perhaps at an enumerable set E,
where however F is smooth, then F is convex, N\

It js sufficient to consider the case D*F>0 for, if we put
Fa(x)=F(x)+x3n, then D*Fa(x)>0, Fux)+F{x), and the Jiniit of a
sequence of convex functions is convex. If F(x) were not cOhvex, there
would exist two points o and 8, and a linear functiom(x) = mx + 1,
guech that (%)= F (x) — {(x) would vanish,‘,;p‘;,_gﬁa%%ﬁ]%,_&[@_m
would assume positive values somewhere in..(Qs.B)‘ It is important
to observe that, if we replace m by m,, where'm,>m and m, —m
ig sufficiently small, we shall still havéthe same situation. Let x,
be a point in {z, §) where p{x) attains its maximum; hence
A% (x,, k) < 0 for % positive and f;ufficiently small. It follows that
Dig(xy=D"Flx}) <0, which (ephtradicts our hypothesis, and
so proves the lemma, unless w, & E.

Suppose now that x{“helongs to E, and divide the inequality
Lo (x0, B) = b (5 + M) P08 0 (5o = D) —p () <O by A>+0.
The function p(x) is sgooth at x,, and so, taking into account that
plx, +m)—0p (xo).*-{; K, plx, — M —p (%) < 0 for # smail enough,
we obtain that'Ghe right-hand and the left-hand derivatives of
p (%) at x, exist and are equal to O, i e p(xy) = Fi %)y — m = 0;
in particdlar” F'(x,) exists. Therefore if, instead of m, we take
a numiés m, > m sufficiently near to m, and such that m, 7= F'(5)
for avery & £, the point x, does not belong to £, and in this
.QQ’SE}\ the lemma has already been established.

N (i) Jf a function F(x), a<X < b, has a continuous derivative
F'(x) and if, at a point x,, all the derivates of F'(x) are contained
between m and M, then m < D* F (%) < DPFix) < M

By the mean-value theorem, the ratia J2F(x,, A)/A* 18 equal Fo
(F (% + A) — F (%, — m))20, 0< h, < h; and since the last ratio
is the arithmetic mean of the expressions (F (%= by — F ()i,
it is contained between m and M.
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(i) Lef f(x), a << x < b, be an integrable funciion, f(x) the
indefinite integral of f(x), and <> 0 an arbifrary nember, Then
there exist two functions ¢ (x) and $ (x) such that (a) | f,(X) — o {x)] <¥,
ifillx)— 4 {x)] <e, (b) at every point where f(x)=~+ o all the
derivates of & exceed f(x), and at every point where f ()=~ — oo
all the derivates of ¢ {x) are less than f(x).

For the proof we refer the reader to any of the standard
treatises on the Lebesgue integral 1). N\

(iv) Let f(x), a <Lx<b, be an integrable function,, {finite
excepl perhaps at an enumembie set E. Let F(x), a-< x by bé a
continuous function such that D° F(x) < flx) < D*F (%), except
perhaps in E, where however F is smooth, Then Fls of the jwm 11.3(1).

Let 9.{x) and $,{x) be a pair of functions G and from (iii}
eorresponding to e=1/n, n=1,2,.. Lei J[g.a ' x] deaote the
integral vof banyliBUnetiahis ¥y over (a x). {Lgt fio=J[fia %),
Hlxy =T fii o, X], Pr(x)= T [on; @, X], ¥nd & {3} G, X} F‘rgm (i)
it fullows that D? ¥,(x) > f(x) 2> D* F (x},¢ (DPD(xy < fixy < DEF(x)
for x¢ £. From this, and from | the obvsous inequalities

D? W, £ DY, — F)+ D* RS DZ(;& > DY, — F)+ DV F,

) ®

we obtain D ¥.(x) — F (&> 0 and DY Dy(x) — F(x)} <L 0, i &
DYF(x) — §u(x)} 2 0, {91’)5 ¢ E. Using (i), we see that ¥, — F and
F— @, are convex fuhctions. Since ¢a(x) ~ f,(x), 4x(x) > f;(x), and
50 Bnl(x) -+ fo{x), ¥akx) > fi(x) a8 n oo, we obtain that fi{x) — F(x)
and F(x)— f,(x) @t convex functions. Hence F(x)—fy(x) is a livear
function and, the lemma follows. Incidentally, in view of {ii), the
result shows,\that D‘?F(x} D? F(x} = f{x) almost everywhere.

vy }Ff F(x) is convex in an interval (a, b), then D* F(x) exisis
Jor aimost every x and is integrable over any interval (a+:s,b—¢),
D,
’ Since F(x) is the indefinite integral of a nop-decreasing
function £ (x} (§ 4.141), we have

FEBLFx—h—-2F() 1

L]
1 o P 6{[& (28— & (x — L.

'} Sesw g de la Vallée Pousain, Jntdgrales de Lebesgue, Sake,
Théorie de tintégrale.
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By Lebesgue’s classical theorem, §(x) exists almost everywhere
and is integeable over (24 ¢, 5 —€). At every point x where £(x)
exists, we have §(x+ 4 —L(x— =2 ¥x)+0(f), and so the
right-hand side of (1) tends to £{x). This proves the lemma,

11.32. We are now in a position to prove Theorem 11.3 (iit),
and even the following more general result, in which the HppER
and lower sums of a series with partial sums s, mean, the
numbers lim s, and lim s, respectively. ¢\

== K

if the upper sum f*(x) and the lower sum f,(x) of the sebies 11.1(1),
where a,~0, b,+0, are both integrable, and finite outside an, enumerableset
Eof points, the serigs is S{f|, where f(x)=D"F (x) {6 J(x) = D* F (x))

and F is given by 11.3(1). wwwndbraulibrary.org.in

For from Theorem 11.2(i') it follows m;a? D*F(x) and D*F(x)
are both integrable, and are finite fo€ ¥'c E. The function F is
smooth (§ 11.2(ii)); hence, if we put ¥fx)=D?F(x), the condilions
of the last lemma but one of § 1181 are satisfied, F is of the form
11.3(1), and this, as we know{.,pmves the theorem.

The following remark, w:ﬁich, requires no proof, will be useful
tater: /¥ the conditions of{the last theorem are satisfied in an interval
(a, &), the function F(x) satisfies the equation 11.3(1) for a<lx<b,

The proof of\l}leorem 11.3(iii} which we have given is not
very simple; it is therefore of interest to observe that Theorem 11.3(i),
which is veryp\Jmportant in itselt, is much essier. For, under the
hypothesis.o‘ithat theorem, the function F(x) satisfies the condition
D* F(x)£9, and so, using Lemma 11.31(}) in its simplest form
(D*FED' F=D'F= 0), we abtain that the functions F and —F
a;e.fcbnvex; hence F is a linear function Ax+ B. The equation

N\

NN

\ M
i 3 @, €08 X + By sinax

(1 Y g, xt—Ax — B =23 00 S oy
1+ %o E n-

holds for all x, and so, making x-os and observing that the sum
on the left represents a bounded function, we obtain A=0, ao='0.
Now the left-hand side of (1) is a trigonometrical series converging
uniformly to 0; hence B=a,=&,=a,=..=0 and the theorem
follows,
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11.33, Theorem 11.32 may be generalized as follows:

If FAx) and f*(x) are finite outside an enumerable set F, and
if J4x) 2 g (x), where g (x) is integrable (in particular, if fix) is
integrable), the series is a Fourier series.

In this paragraph we shall enly prove the theorem in the
special case fix):f‘(x]:f(x) ). The general result is a corollary'\
of a theorem which we shatl prove in § 116

Let gy, £ 9n ©@» be functions which have a similar meah}hg
lo that in the proof of Theorem 9.31(iv), but correspond to tlg"é*fuﬁc-
tion g. It follows that, outside E, D¥F ~— Dy) lx D B\ D, =
=D*F—~D'Py 2 f—g20. Thus F— D, is convex,/ahd,’ making
f1—co, we obtain that F— g, is also convex, Hence DASL gy =f - g
exists almost everywhere and is integrable over ahy}finile interval
8 li”fﬁ%ﬁ]?r'fﬁléﬁger%gr&wuee that £ is integrable; and the theorem
cousidered follows from Theorem 11.32, <;\

 §

11.4. The principle of localization. It was proved in
§ 2.5 that the behaviour of S[f) afla ‘point x, depends only on
the values of f in an arbitrarily.mail neighbourhood of x,. This
is a special case of the foIlosﬁr[hg more general theorem, due to
Riemann, which involves Arbitrary trigonometrical series with
coetficients tending to Q;}Tbe behaviour of the series 11.1(1) af a
point x, depends onlyq difvthe valiwes of the Junction F(x), defined
by 11.2(1), in an arbitparity small neighbourhood of x,. More precisely:

Let Fi(xy aqdF (x) be the functions F corresponding to two
trigonometrical,Sebies; if F,(x)=F,(x) in an interoal (55, — &, Xy +),
or, more gewerally, if F\(x)~Fy(x) is equal to a linear function in
{x,—=, g€}, the series considered gre equiconvergent gt the point x,.

I\ff.t'wo integrable functions fi{x) and f{x) are equal in an
interval (x, — =, x, 4 ), then, sinee Fourier series may be integrated
et by term, the functions F| and F,, corresponding to Z{f] and
Z[f)), differ by a linear function in (x, —¢, X, + 2); this shows
that the principle of localization for Fourier series is actually a
special case of the theorem just stated.

) This result has been aehtajned by Banach (as a generalization of
20 earlier result of Steinhaus [2] for the case g(x)=0) but never published.
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1L.41. Rajchman’s theory of formal multiplication of
trigonometrieal series. A pew appreach to problems of loca-
lization is due to Rajehman, who developed the theory of formal
multiplication of trigonometrical series with coeffizients tending
to 07). Not ooly does this theary enable us to obtajn Riemann’s
results, but it can also be appiied to problems where Riemann's
classical method would not work. ~

We shall write trigonometrical series in the complex form

(§ 1.48). CGiven two trigonometrical series O\
+oa . +em . ra “
M a) Seeem, b Zmmer,
we shall call the series D
R % dﬁrﬁﬂulibrary.org.in
2) 2 Caem where Co =2 0 p
A= —ca $

=)
their formal produet, provided that the seri.ge\iih}ining Caconverge. T.his
is certainly the case if the first of the serieg(1) has coefficients tending
to 0 and the second converges absolutely. We shall assume for simpli-
eity that the series considered ard real, i. . that 6o =Cn, Yon="Tn.
It is plain that also C_, = Coo ¥
We require the followidg®lemma, in which we suppose, as an

exception to this rale, thaf's, and v, are arbitrary complex numbers,

If ea>0 as n—»j-\‘gv';;nd if Live| converges, then C, = Z,‘ €pTnp

fends to 0 as rg;,:-_k oo,
For let & Max |c.f; then, as # - + oo,
'\ 2] | 2" o] <
\"N‘-" <M =2_“f7n~p|+}g§:!fp 2 Tl <
O - =
\* <M X |y|+Max|gi 2 |4l-0.
Pz g

O g==r (n2]

N oas regards the case n—+— oo, we gbserve that L :ng“ Cp'im-py
where ¢, =r_, ¢, =y, e

If ¢» and v, depend on a parameter, and the conditions imposed
upon ¢, and vy, are satisfied uniformly, then C, -0 uniformly.

) Rajehman (2], (3], Zygmund [11]. lu the last paper a discussion
of the case of costficients not tending to 0 is given.
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11.42. We shall say that the series 11.41(1b) is rapidly
convergent to sum s, if the series converges to s and if, moreover,
Lo+ + A Myt <co, where De=|te| +{ter1i+... We certainly have
rapid convergence if, for example, 1,= 0(n—3), n>>{, The following
theorem is fundamental for the whole theory,

() Suppose that c,~0 and that the series 11.41{1b} converges™,
rapidly to O for x belonging to o set E. Then the product FL41(2)
converges uniformly to O in the set E. ¢\

Let Ry(x) denots the sum of the terms y, eim wit~h’~.?z =k
B x¢E k>0, then | Roa(x) | = | Reyalx,) | << 1},4_1," aid so the

o 257>
series | Rulx,)! is uniformly convergent in £, Now

m i -
www.d bl‘ga(rﬁx)a?_ytgﬁcﬂ et = 37 ginx, Z \2‘9'7 n-.p ==
A= n=—m pP=—to
- n O
— 2 Cp 2inx, 2 Y4 éf{é——p)x. —
F=-—ta R=—rm !

"

—_-p 2 cpelex R—m—y(xg}.':';z Cp 8% Ry pyi(%,).
Applying the lemma of theYast section (with £ and Ra—p(x,)
instead of ¢, and 1._,) ye,\see that Sa(x,} tends uniformiy to 0
for x, ¢ E, m » oo, Tt{& proves (i).

The reader wiN observe that the above theorem remains
true even if the doefficients ¢, and %= Of the series 11.41{1) depend
themselves op {the variable X, provided that the formal product
is defined b5$1\.41(2). This is not surprising since proposition (i),
as well ag\(if) below, are nothing but theorems on the Laureat
multiplieation of arbitrary series ).

L) I a0, and if the series 11.41(1b}) converges rapidly to

\

Supy 3 (x), the series

.1_2: Cueine and A (x) Z € £inx

A=

are uniformly equiconvergent in the interval 0, 2=),

'} Similar theorems can be established for other rales of multiplication,
fo particular for Canchy’'s rule.
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Let us write 1, =Y%— A(x), 10 = Tn for 140, and consider
the fornral product £C,e™ of the series Le,ei ang E1ne™*. In view
of (i) and the additional remark, the formal product converges fo 0
uniformiy in the interval (0, 27), and it is sufficient to notice that
Cr=Cn— 1 {X) Cn

New we shall state a number of corollaries which, although,
very simnple, have important applications, \

(&) If Mix)5%0, & necessary and sufficient candttloa\}hat
11.43(2) should converge at the point x,, is that 11.41(1a) should
converge fhere. N

Let 2 be any Toeplitz method of summation (§ ;-!'l) Ohserving
that, if ¥ ) einx, converges to 0, it is summable f.)[‘go 0, we obtain:

(b) If nix)=£0, 2 necessary and sg iidirandtidition of hah
NAN2) should be summable N af the poirt xplsithat 11.41(a) should
be summable W at that point. If the sum\of the latter series Is s,
the sum of the former is ) (x)'s. NV

(¢} If the series 11.41a) Is andformly convergent, or summable
Y, over 2 set &, so is the seriess\M 41(2). The converse is also true
() =e>0 for xec.

Propesition (b) may,be éompleted by considering limits of
indetermination. Restrieting ourselves to the case of ordinary
tonvergence (the rgdder will have no difficulty in stating the
general reguit) we‘ll';a\ve:

() If the wpper and lower sums of 11.41(1a) at the point X, are
s and s respgctively, the upper and lower sums of 11.412) are X(x5) s
and l(&{-‘s: if 2%} >0, and M(x,)-S and A(5o)s if h(x) <0,

16.4%. Now we shail prove certain theorems about the series
conjugite to formal products. It will be recalled that the series

(/%8bjugate 1o 11.41(1a) may be obtained from the latter by replacing
€/ by Cnen, where e, = — i sign 2 (§ 1.13).

(D) Under the hypotheses of Theorem 11.42(i), the series conjug-

8ie to the formal product converges uniformly over E.

(i) Under the hypotheses of Theorem 11.42(i1), the series

(1) a) f Catne™ gnd b} k(x)”_z Coe € (s, = — igign n)

H——an

are wniformly equiconvergent in the wider sense.
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Let S.(x) denote the partial sums of the series (a). Writing
th = ca €%, and similarly defining C; and v, we have

m m o o s
Sm(xu) = E 5, Cp = 2 En 2 C‘L T;:-—p = Z c}, 2 T;e--p &y =
H=—rm A=t  p——om = Hemoemr
o m
=—1i 2 CE?Z (T:'x—p - TLH -p) =
f=—c=  n=] '\

=— EP_Z_: AR - o(X,) — R piyi(%,) — Rom—p(%,) + R—;J(xo}}\ \
and, in view of Lemma 11.41, if x,¢ £ and m —+ 0o, the lgs'{:}axp'res-

sion tends uniformly to —i 37 ¢} {R_p(x,) + R_p(x,)}. THis proves (i).
To prove (i) we use thep same device as in the chs‘e of Theorsem
11.42(ii). We consider the formal product A6re™ of the series
Len W\»ﬁﬂﬁt‘hﬁB‘i"éry.'ﬂihg.imoefficients Cr depend on x, but if we
define the series ‘conjugate’ to the produ ds ¥ €. Cy €%, the latter
series will, as the proof of (i) showgNbBe' uniformly convergent.
Since Cy = ¢, — A (x) 1n, the theorem_ is Jestablished.

The following is one of the condllaries of (ii):

(@) If the series }] ¢, é"’"g s uniformly summable % over a
set C, 50 is (1a) The converse is also true if |). (X)| = = >0 over £

A characteristic f{e&?ure of the theorems on formal! multipli-
cigtion which we ha & proved iz that we suppose next to nothing
about one of the J&tors, whereas upon the second we impose
rather stringent eonditions. However, if the first series is a Fourier
series, the cofiditions imposed upon the second series may be
relaxed slj ﬁB}"r The reader will ohserve that Theorems 2.53 and
2531 mag\be considered as theorems on the formal multiplication
of irigohometrical series in the case when the first factor is a
Fourfér series.
~\\JWe shall now give a number of applications of the theory

Nof formal multiplication.

11.44. As a first application we shall show that, given an
arbitrary closed sef E((0,2%), there is a trigonometrical series
with coefficients tending fto O which converges in E and diverges
outside EV).

" Rajehman [2. it is plain that, it £ contains one of the poiote
0,2z, it must contain the other.
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We start with ihe fact that there is a trigonomelrical serfes

(1) +a, +Z_,:(an eos nx + &, sin nx) {a, + 0, b, 0)

which diverges everywhere (§ 8.5). Let A (x) be a function, with
Fourier coefficients O(#—*), which is eqgual to 0 in E and different
from 0 elsewhere'). The formal product of (1} by  {}] gives the
required example, for, in view of Theorems 11.42, this procluct‘\
converges to O in E and diverges outside E. N
Bince, in view of Theorem 11.43(1), the series con;qgaie to
the product considered converges in F, we obtain at.once: for
every closed sel E sityated on the circumference of t&g\umt circle
there is a power series with coefficients tending to  @hich converges
in £ and diverges in the remaining poznt&"éf“tﬁ\brﬂﬂéh’ﬁi_‘f@}wx‘é&w

11.441. The only example which wg\so far know of an
everywiere divergent series is Kolmpgeroif's example consi-
dered in § 8.5. Since that example IS a Wourier series, the theory
of formal multiplication was not mdlspensable in the argument
of the previous section, and We.eonld use Theorem 2.53 instead.
Moreover, Kolmogoroff’s series\is fairly complicated, and it is
therefore desirable to have a&hmpler example, Following Steinhaus,
we shall show that fke se'rbs

(1 &\cos k (x — Iog loz k}

) ,“’,"k’:ﬁ 10g R
A\ X

diverges for ez@ry x5

Lat é,,\ ~log 4} 7 = log log %, and

.,\ L e B (x » ) at+ig 1
Gl x Cos kix — Tk N Gy = —_— Iy = (Vny Va1 ).
( “{ k_%:i.x log & k:%‘-a—l log &

_X‘__

'} Let .{ ot B )} be the sequente of intervals contiguous to E, and let » (x}
be equal to (X — x,J" {5, — £)* in (2, &,) and to D elsewhere. If 4, >0 Doy <lom

We may pul A(x) =T,k (x), for A"(x} exists ang is continuons.

%1 Fer a more complete result see Mazurkiawiez [i]

¥ Steinhaus [10]. The first example of an everywhere divergent
trigonnmetrical series with coefficients tending to © was given by Steinhaus
9. Other examples will be found in H ardy mnd Littlewood [9], |18l
See afsg Wlfti)n[l]
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Since Gr = Ljlog (n +%4) -1, we have G,> 09 for n> %, The
inequality |sin #{ < |2| gives

Aty
@ 0L 0= Gl < —2 . 5 hx_
2 ]og I ok=nl1

If n<k<n4i,. then Vn < Ty S Unyr, Hence, if x belongs to the
interval (s, ¥ayy), 73> 3, then | x — Vs | < Untu, — 0a; applying {he
mean-value theorem we obtain i x — x| < lafn log n << 10, and the
right-hand side of (2) is less than (n + L) 1,12 2 tog n << 0f for
72> n,. Collecting the results, we see that O

Grlx) = Gr — (Gu— Gu(2) > 0.9 — 0.6 = 0.3, x ¢ Ty w5 Max (m, ).

S
Since every point x belongs {mod 2=) to an ~ff11}1nite number of

the intervals 7, the series (1) diverges for eyery x.
www.dbraulibrary org.in \

11.45. Fatou’s theorem on pqﬁ{ér series. If the series
(1) 3w 2n = )
A=0 ’.“
converges at a poiot of the urﬁ&circle, then o, + 0. The converse
is false (the power series whose real part for z=e is the series
11.441(1), diverges at every peint of the unit circle), hut

ff 0, >0, the s.g.qf’e}*(l) converges at every point of the unit
circle where the furiqx'diz F{x) is regutar. The contvergence IS uni-
form on every clgsed arc of regularity.

This thqoﬂeﬁf, due substantially to Fatou 1), is a eonsequence
of more geperal resnits which will be established iuter. In view
however /of'its importance, we shall prove it separately, Consider-
ing th;hvé'al and imaginary parts of (1) for z — e, we see that
the théorem will be established when we have shown that, i fhe
| SerieS 1144(1) is uniformly summable A, for a<x < b, to a func-
" tion & (x) whick together with ifs first and second derivatives s

tontinnons, the series i+ uniformly convergent in every inferval {(¢', ")
interior to (a, b),

Let 4 (x) be a funeticn eqaal to 1 in (a’, '), equal to 0 out-
side {a, &), and such that A"(x) exists and is continuous. Since

' Fatou (1], M. Rieasz [1], [5% {6]. The part coacerning nojform converg-
énce, was first stated by M. Riegs.
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the coeificients of &[}] are QO (n*), the formal Product of 11.44(1)

by € [A] converges uniformly to 0 ouiside (2,6). By Theorem

11,42(ii), this product is uniformly summable A for aCx b to

the vaine X (x) g {x). Hence it ia uniformly summable 4 in the

whole interval ¢ < x < 2%, to a sum ? (%) which has a continuous

second derivative. It follows that the product is & [9]; for if,
%, f: are the coefficients of the product, and ¢ {r, x) the corres:

ponding harmonic function, then .\f\

"N

in i
@ 1 = -1—f€9 (r, x) cos nx dx, Bur® :—1-f<p (7, x)siornx dx
T3 n§ A&

and, making -+ 1, we see that a, and 8» are Fodrier coefficients
of . Rince o"(x) exists and is eontinnous \the numbers ay, f,
are O{n), and so o] converges uniforHify T oYM TN L IR
AMoy=1tfor ¢ < x<¥, and applying Théerem 11.42(i1), we see
that 11.44(1) converges uniformly over (' 5", and the theorem is
establiched. O

The reader will notice that‘t]:'re condition concerning g" was
not incdispensable, We only used it as a simple test enguring the
convergence of Z[p], It wb}ild also be suificient to assume
that ¢ satisfies the Dini-Lipschitz condition, or is continuons and
of bounded variation. \

11.46. Proof<of the prineiple of localization. Lot ¥
be a linear methdd of summation. We shall say that ¥ is of type
U, if every trigbnometrical series with coefficients tendi'ng to 0,
and summab{a’i’{ to a finite and integrable function f (x), is Ef]
In § 11,3,w6 showed that ordinary convergence is of type I/, It
is impo\\tén% to notice that the method R is also of type U this
Waﬂ,i'gﬁplicite}y proved in § 11.3, for the essence of the Riemann
method in problems of uniqueness just consists in treating con-

{Vergent series ag series summable R. In § 11.6 we shall prove that
Abel's method of summation is of type {/

In what follows we shail frequently consider formal produc.ts
of trigonometrical series by the Fourier series of functions k. To avoid
répetition we ghall tacitly assume that A"(x) exisis and is of
bounded variation. Then the Fourier coefficienls of f are O (n—%)
&nd the theorems on formal multiplication can be applied. It will
be also convenient to suppose that, if of two functions ¢ {x) and

4(x} one is equal to 0 in an interval (=, B), the product p¢ exists
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and is equal 0 O in (o, B} even if the second factor is not defin-
ed in that interval.

(i) Let A de any method of summation of type U. If, for
a<x<b, the series 11.44(1) is summable Y to a finite and infegrable
Sfunction f(x), then, for o' < x < &, the series is uniformly eguicon-
vergent with S[Mf), where A (x) is equal to 1 for o' 3KV,
a<a <¥<b and fo O outside {a, b) (mod 2x), The 5;&!\'5&{ con-
Jugate to 11.44(1), and S [if), are uniformly equiconvergegtds the
wider sense in the interval (a', b)), AN

To prove the first part of the theorem wpfﬁbsérve that the
product of 11.44(1) by S[}] converges to G _edtside (g, b), and is
summable ¥ {o A in {(4,5). Hence this phdduct is summable &
in the whole interval (0, 2=) to sum :‘Q;),f (x}, This sum is in-

vk gt RRYe e broduct is €[4/} abdit remains to apply Theo-

N
h
\ )

rem 11.42(ii). To obtain the second part of the theorem we apply
Theorem 11.43(ii).

Now we are io a posivtip;i'“to prove the Riemann principie
of localization which will R:2 \éstablished in the foliowing general
form (we preserve the notation of § 11.4):

(i) Let S, and Sy be two trigonomelrical series with coeffi-
cients tending to O \and let F(x) and F,(x) denote the sums of th
series S, and Syintegrated formally twice, [f the difference F{x)—FiX)
is a linear faqaﬁon in an interval a < x < b, the series S, and S
are uniformly equiconvergent in every inferval (a', b’y interior fo
(a,b). TheySeries conjugate to S, and S, are uniformiy equfcom'efgm
in th{f;éf&er sense in the interval (a', b} ?).

N

> Let 11.44(1) be the difference of S, and S;. We bave fo
~show thai this series, as well as iis conjugate, are uniformiy
“eonvergent over {a', #), the sum of the former being 0. Integraiing
11.41(1) twice, we obtain a function F(x) = F,{x) — F,(x) which 1
linear over (4,6). Since 4 F(x, k)i#* =0 for any x iaterior 0
(@, ), and % sufficiently small, the series 11.44(1) is summable &
to 0 for a<<x<'4, and it suffices to apply propesition (i).

As a special case we obtain the following theorem.

'Yy Rajechman 2], Zygmuod {11
) Riemsnnll], Rajchman [2], Neder 2, Zygmupd S314
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(i) Suppose that the sum F (%) of the series 11.44(1) integrated
twice satisfies an equation

x ¥ )
M FO=Aax+84fay[riya, @< x<b,

where 4 and B are constants, and Fe) is a fanction integrable oudr.
the interval (a b). Let Fi(x) be the function equal to f(x) in {a, b)
and to 0 elsewhere (mod 2n). Then the series 11.44(1) a{u( @"[f‘]
are uniformly equiconvergent in every interval (a', b interior to
(a,8). The series conjugate to 1L.44(1), and E[f*], are uniformly equi-
convergent in the wider sense in the interyal (a, b’)..\ \

For the proof we notice Fhat F&“@EF&%’Q&Q@Q&%E%”}“
term by term; hence, if Fi(x) is the sum of & ¥ integrated twice,

Fi(x) satisfies an equation similar to ()7 gnd so F(x) — F(x) is
linear over (q, #), J'\

A special case of (iii), which was already used in ihe proof
of (il), deserves a separate statement:

(iv) If the sum F(x) of th&'Series 11.44(1) integrated twice is
linear in an interval (a, b), the* series 11.44(1) as well as its conju-
gate qgre uniformly converpent in every Interval interior fo (a, b),
the sum of the former ise}ies being 0,

1147, Theoremn"11.46(iii) states that, it F(x) satisfies the
equation 11.46(1), {h series 11.44(1) and €{f"] are uniformly equicon-
vergent over™dyd). From this and from the fact that Fourier
series may heMntegrated term by term we deduce

Under’the conditions of Theorem 11.46(iif), the series 11.44(1)
may bNftegraied formally over any interval (', &) intetior 1o (a, b);
the series

N\ (1) tax+Co4 f a8in 7x — by COS X {C const.)
"==1 ft

converges uniformly over (', b).

It is only the second part of this theorem which needs a proof,
and the result will follow when we have shown that (1) converges
at some point interjor to (a, b). Te show this we observe that the
Periodic part of (1) is a Fourier series witk coefficients o {1/n},
and 50 it is sufficient to apply Theorem 11.21(i).
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The theorem which we have just obtained may be slightly
generalized, viz., under the same conditions as above, the series (1)
converges uniformly, and so represents the indefinite integral of f,
in the whole interval a < x < b. This is an immediate corcllary
of Theorem 11.21¢ii). In particular,

If the series 11.441) converges in the interval o < x.< b
except perhaps at an af most ennmerable set E af points, to ain.
tegrable function f(x), the series (1) converges uniformiy over (Q, &)
fo the integral of fY). 2%

11,487, Following Young, the series 11.44(1) 1s‘cﬂiied a re
stricted Fourler series, associated with an interval (a §) and a fune-
tion f{x)e L (g, b}, if this seriesis a formally ditfefentiated Fourier
series of a funelion ¢ (x) which is the indefipilte’integral of f{x}
JorwadFraditary org.in N

If 11.44(Y) is a restricted Fourier \genee associated with an
interval (a, 6) and a function f{x), and\Nf f'(x) has the same mean-
ing as in § 1148, the series 11, 44{}) and E{f*) are uniformiy
equiconvergent over any interval (a ‘W'Y interior to {a, b). The ser-
ies conjugate to 11.44(1) and SELY are nniformly equiconvergent for
& < x <V, but in the wider Sense,

The theorem is a corollary of Theorem 11.46(iii) if we observe
that the function F(x)*mrrespondmg to 11.44(1) is of the form
11.46(1). X\

11.49. Riémann’s formulae. Riemann deduced his prin-
ciple of lpc\'alization from an important formula which we shall
now proye,in a slightly more general form.

Leb\Z < a' < 5" <" 4, and Jet %(x) be a function equal to 1in
(a', &), vanishing outside (g, 5) (mod 2z) and having Fourier coef-

Mf,icig’ants Q.

N\ If F(x) is the sum of the series 11.44(1) integrated twice,
the sequences

n & "
() 48+ 3 (ar cos kx + by sin kx) - L frayn :; Dt — %) dt
= o A

'} Luasin (2], Hobsen [2). Tt is sulficient to assume that the upper and
Yower pums of the series 11.44(1) are finite for a<  x< 4, xe £, and that one
of them is integrable over (g, b,

® Young 115), [16]; see also Hohson's Theory of functions, 2. p. 686
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i\ﬂ‘:

b "
(2) 2 (gesinkx — by cos kx) — wﬂl‘—‘/‘f-‘(r) Y (g)i"éﬁn(t_ x) dt

£

tend aniformly to limits in the interval (@', 8. In the case of the
sequence (1) the limif is Q).

I this theorem, [, and D, denote the Dirichlet kernel. and\
the conjugate Dirichlet kernel respectively. Since the expressigns
(1) and (2) depend only on the values of F(x) within thegnterval
(a, 7). the above theorem contains the principle of ldcalization.

To grasp the meaning of the theorem suppogesthat e, = 0,
and denote the series 11.44(1) by 5; Fis then a Jperivdic function
with coefficients o {#~2). Assume for a while l,ha\j.\\the formal pro-
dact of <{F] and Z[2] bas coeffieioms db{aiftiralrick s @asy to
prove but is not required for the proof of the\theorem). Then F» may
be considered as the funetion F(x) corres :)hding toatrigonometrical
series 5. Bince F{x)= F{x) in (a, B the series S—35, converges
uniformiy to 0 in every interval (alt 3, &' — &), & > 0 (§ 11.46(i1)),
and it suffices to observe lhaf:i'l) is the difference of the #-th
partial sums of the series S}mﬂ S). Similarly we prove the part
of the theorem concerning® the sequence (2). In other words,
Riemann's formulae argfNn a degree, consequences of the principle
of localization. Theyenly defect of the above argument is that it
gives convergene {ir'the interval {a'+¢, & — &) and not in (&', b').
Although this Jpoint is of minor importance, we shall prove our
theorem in jtgxcomplete form, first for aesthetic reasons and second
since in t'he‘SriginaI paper of Riemann the interval (¢, #'} reduces
to a pqiqta, nd so the above argument could not be applied to

se’ i ing lemma:
that\;‘{s@e ). We require the following

R , I Vand W are frigonometrical series, then we hawe the equation
WAVYWY = VW oV W+ VW, where products are formal products
\ yand dashes denote formal differentiation.

For if ¢n, 14 Cx denote the complex coefficients of V, W, VIV
respectively, the n-th coefficient of (VW)" is

'} Riemanon [1], Neder [2], Zygmund {1i]. ) "
!} Oon the other hand, this argument imposes less stringent condit a.nn
upon i, for, a8 ean easily be verified, it suffices to suppose thut the Fourier

coefficients of % are o{n ).
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— 2 EF T,;__p'nz

p:_-..aq
and it is enough to netice that — = (n—p)*+2i{n—pyip—pt
Suppose now that g4,=0, and let § denote. the series 11.44(1).
The expression (171 is the zn-th partial sum of the series

S~BFH =S~ (S[F1SPY = Q

=(S—-F1SP) —2@TFI &[] - S{FT&" (M.
Since E"[F]=95 and S—SSH=5S{1 -] = S"i:[\l 3, we
obtain the equation N\

T
| %

@ S—G'FN =SS~ - 2&1F] & DLLE|F & ph

woODsEITinG that oFg EN(F], S{F] have coefficlents tending to 0, and
&1 —1], €[, 2"[] have coefficientg‘@)‘nﬂ) and converge to 0
in {4, §"), we see (§ 11.42) that § —.ZU[F3] converges uniformly
to 0 over (2, ). This gives the first waif of the theorem. To prove
the second half we notice thab, tHe series conjugate to each of
the products on the right of{(8) converge uniformly over (&}
(§ 11.43), and that (2) is the“w-th partial suwm of the series conjug-
ate to S— S'[FA, N
Stace the series/f1%4(1) can be represented as a sum of two
trigonometrical serie® 'one of which consists of the constant term
4a, and the othet of the remaining terms, it is sufficient to prove
the theorem if'the case S =} 4, Integrating by parts twice, wo
see that (1)\@nd (2) are equal to
’\ 2 i
@~ L [F O OYD - R dt, [ {FiEy Oy Dt — D
O\ =i T g
X !:’qépectively. Since F(£) =Y, 2, 1% apd {FEMOY = La, for &' <t <P,
~d _the simplest criteria for the convergence of Fourier series and
) copjugate series show that, for a'< X%, the expressions (4) tead
uniformly to limits, the limit of the first being 0. This completes
the proof of the theorem. We add two remarks.

{a) We supposed that 4’ <#, but the theorem and the arguw
ment are unaffected if @ = &', provided that M (x)="4"(x) =0 8
this point. The last conditions are automatically satistied in the

whole interval (&, ¥) if ¢ << # and the Fourier coefficienis of »
are O (n—1),
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(b) The first of the proofs which we have given in this
section and which elucidated the meaning of the Riemann formulae
shows in what sense the method of Rajchman is, in certain cases.
advantageous over the original methed of Riemann. Let S be the
series 11.44(1). Following Rajchman, in order to remove the influence
of the behaviour of S outside (2,8), we multiply S by Z[i), where A
is a tunction which vanishes outside (g, b); the behaviour of SS N
ie known at every point. Riemann’s method consists in inte~
grating § twice, multiplying the resulting function Fix) by\i%x},
and differentiating the product twice. That the resulting(Series S,
is equiconvergent with S in (&, &), is just the Riemann -theorem,
and it can easily be shown that S, converges to 0 outside (g, &),
Theres remain iwo intervals, viz. (g, 2') and (&' ‘and Riemann's
theorem tells us nothing about thgfl%‘fl)&%gﬁ?qi T(?T%rho{‘ﬁgn{ Using
the theorems on formal multiplication, this Behaviour can be read
from the formula (3), and we see that ne’g\oﬁly does this involve
the series S, but also &'{F}, which is~ob\tained by formal integra-
tion of S.

It must however be emphaé:ized that the Riemann idea of
introducing the function F _jnto problems of localization is of
fundamental importance. Theymethod of formal multiplication com-
pletes it, but can in no..'wa'y’ replace it

11.5. Sets of‘:ll\nlqueness and sets of muliiplicity.
A point-get EC\‘Q\,Qn] will be called a set of anigueness, or
U-set, if every{frigonometrical series converging to 0 outside £
vanishes iddafiéally. In § 11.3 we showed that every enumerable
set is a Yhget. If F is non-enumerable but does not conlain any
perfect{(subset (the existence of such sets E follows from Zermelo’s
Axigin E is also a set of type U. This follows from the fact that

thevset of points where & trigonometrical series does not converge

\11;0 0 is a Borel set and so, if it does not contain a perfect aubset,

Jit must be at most enumerablel); this implies that the series
vanishes identically. If £ is a set of uniqueness, every set £,C £
is alse a {J-get.

A set £ which is not a U-set will be called & set of multipiicity,
or M-set. If E is of type M, there is a trigonometrical series which

) See e g Hausdorlf, Mengenichre, p. 179—180.
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converges to O outside £ bul does not vanish identicully. Any set
E of posilive meagure is an A-set. For let £, | £,|> @, be a perfect
subset of £, and f(f) the characteristic function of E,. The series
& [f] converges to 0 at every point x¢ £, and does not vanish
identically since its conslant term is |E,/2x> 0. Tt follows that
it is only the case of sets of messure 0 which requives investiga-
tion, and it is a very curious fact that among perfect sete of meas-
ure 0 there exist [lsets ags well as M-sets. Whether a given set
E,|Ei=0,is of type U or of type M seems to depen;i{0a’ the
arithmetical properties of £, and the problem of necessary and
sufficient conditions — expressed in structural termns 41§ not yet

"

solved. A\

€

www_lcfﬁﬁmiﬁﬁf.'&ﬁ- are sets of unlqueness;";.\rhat there exist
perfect sels of type I was found independentighby Mlie Nina Rary
and Rajchman'). The latter showed thatwéts of (yne /7, which
we considered in § 11.1 (in particulariCaniors ternary set), are
U-sets, and this result will be proved ‘here.

Let Red x=x—[x]=1he nox;—ir{tegral part of x. We eonsider
a sequence {2} of real nurnbez:sj~iiﬁd an inereasing sequence |}
of positive integers. We fix(a bumber 0 <4 <1 and denote by
Ej the set of points x where Red {m(x/27) —a) < d. I E=F E,...E;..,
the set £ will be called an H--et, and the reader will have no
difficuliy in proving“”é,\g. geometrically, that this definition is
eguivalent to that’\QfxE 11.1. 1t will be eonvenient to place the
sets on the circumference of the unit circle. £, will then consist
of 7; equidistafl;dres, each of length 2ad/m. The complementary
set £, consjstgrof #, intervals 1%, l}'ﬂ, . .,I,Ei) of lenglh 2x {1 — d)/ns.

Let £ be the set just defined and let

s 3 caen
”b¢~\€1ny trigonometrical series convergent to 0 outside £. It is
\cénvenient to suppose that this series is not necessarily real, 1. e.
the condition ¢ .=c, need not be satisfied. Let F(x) be the function
obtained by integrating (1) formally twice. F{x) is linear in every
interval / contiguous to £, und so, if the points x, x+2k, x—2k belong

'y N.Bary 1], Rajehman [1]. Another proof, based on a different
idea, will be found in Rajehman [3). See also Verblunpsk ¥y Bl
Zygmuad [12].
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o the same interval /, the expression ©u(x) = 4% F(x, 2R)/4k? is
equal to 0. Take £ <{2r (1 —d) 4, and let x, be the middle-point
of the interval A*. Since the intervals //* are outside E, the
expression @,,(x,}, where v=1#y, is equal to 0, and the same may

be said of §,,(x,), where

g vl rp!
SylX) =— 2 Dy, (-’H' . )
¥ W=t v a
oA\
It is aol difficult to see that O ’
- . in?nk ,(""‘.
@) Sufx) = €y 4 I cpy ™ 0

= www.d‘ﬁ}'%lib‘%l\'y_org_in
where the dash signifies that the term nz=90"is omitted in sum-
mation. Since the absolute value of the“sum on the right does
not exceed a constant multiple of Max{cm| (7 > v), we see that
S, {x)~¢, a8 v-oo, uniformly in x. Taking for x the point x, defined
above, and observing that S,,(#)=0, we obtain ¢ = 0.

To prove that cm = 0, we maltiply (1) by e~ The new
series converges to 0 outside £ and so its censlant term cm 18
equal to 0. This completes the proof.

P

11.52. Asa c}:r\ol‘[ary of the previous theorem we shail show
that there exisf :continuous tunctions of bounded varistion with
Fourier coefficfents 5= o (1/7) (§§ 2.213, 5.7.14). For let £ denote
the Cantor¥ernary set constructed on {0,27), and @(x) any function
continugdd “of bounded variation, constant in every inierval conti-
guous™d £, but not in the whole interval (0,2m). The Fourier
coefficlents of & are not o (ljm). For it they were o(1/n), and if

~J44(1) denoted G [®)] differentiated term by term, we should

\Eave gy 4|6, =0 (1) Since the integral of @ is linear in thg
intervals contiguous to £, 11.44(1) would be summable R to
outside £, and so (§ 11.4) would converge o 0 outside £ Since
E is a U-set, we should have @, =&, = b =..=0, & (x) = const,,
conirary to the assumption'}.

') See also Carleman [3], Hille and Tamarkin [2].
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11.53. Mencholf’s example. That there are perfaect M-gets
of measure 0 wag shown by Menchoff!), and is & result chrone-
logicaliy prior to those of § 11.51.

Consider the following set. From £, = (0, 2z} we remove the
interior of a concentric interval of length |£,1/2. The rest E;
consists of two intervals £| and Ei. From each of them we remove
the interior of concentric intervals of length El|“3 The rest £,
consists of four intervals £3, t=1,2,3,4 Having defined .8,
consisting of 2% intervals Ensy we define E. by remoﬂng the
interior of intervals concentric with E,, 1 8nd of lenpth [ £, <(rz+1)
We put £=EF, E, E,.. and, following Menchofi, we @hail prove
" that £ is a perfect M-set of measure 0. N

That E is perfect is plain. Since the measure uf E, is equal
to 2x{1 — /{1 —-1/B).. (A —1(n+ 1)) =2x/(n+ 1) Nweobtein £ =
To proves tatJlilisaag Mged it is sufficient toztensiruet a funciion
F(x), constant in the intervals contiguous i’O}E, but not egunivalent
to a constant in (0, 2), which has coefficients ¢ (1/2). For &[F]
differentiated term by term converges to 0 outside £ and does
not vanish identically. o

The set complementary to, E,, consists of 2°— 1 intervals,
which we shall denote by A Y _1 2,.., 2" —1, counting from
the feft to the right. We defite a sequence of continnous functions
Fi(). Fy(x), ... s Falx), o {055 % < 27) satisfying the following con-
ditions (i} F(O} Fu8z) =0, Fa(x) =1, (i) Fu(x) iz constant in
the intervals !,,,k =0,2,...2"—1, and linear in the intervals
Ei, i=1,2,...,2", (llﬂ Fn+1(x) F ix} in every . Moreover, we suppose
that fiv) if f,,r\ is contained in an interval E., the value of Fryi(X)
in fry, is emaal to the mean value of F, at the end- points of E..
These condiftons determine the functions Fu(x) uniquely (we leave it
to the/reader to draw the graphs of the curves). It is easy to
verifyd that | Fa(0) | <+ D/n, | Fopalx) — Folx}| < 1/27(n +2). 1t
follhws that the sequence {F.(x)} converges umformly to a econ-
tihuous funetion F (x), and that i Fix) — Fu{x)| << 1fn 201,

Let C; be the complex Fourier coefficients of F{x), To show
that nC,. = o0 {1). we write

Y Menchotff [} seealso N. Barym Rajchman [4], Zygmurznd {13]
In the last puper it is shown that. it ”k+11"”k>" >8, a0 T 'LZ"% the

L=

preduct [J{1-+a,cosn, %) may be wrillen in the farm of o trigonometrical
k=1

series, which converges to ¢ almoat everywhere (but not everywhere).
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23-. b ] i
ner—‘“dx = nf(F-— Frye intdyg 4 anNe—f’" dx =
mn ? ’
=n [(F— Fyyemdx —i[Fie-mde = 4 4 B,
L] L]

where # and N are positive. Since F(x) = Fy(x) outside Ex, [ 4]
does not exceed ni{fy| Mex|F — Fyj<2a/N?2V-1= O (1/log? m),{
if N is defined by the condition 2¥ 1. p <oV Passing to the
integral B, we observe that Fi(x) is equal to =+ (N f)/= inNEy
and te 0 elsewhere. To estimate the integral of e~ odep any
interval belonging to Exy we have two inequalities: the abs:-:vli;ta value
of the integral exceeds neither the length of the intefwi nor 2/n.
The first inequality is more advantageous for in{er}rfils not large
in camparison with 1/n, the second for larger jitervals, However,
neither of these two inequalities alone wm:xl,@\b;nablﬂams‘yterghﬁw
that B=o0{1), and to overcome the difficulty wé proceed as follows.

Let v=vy< N be & positive integer\ybich we shall define pre-
sently; hence Ex(C £,. We write Fi(X) = gv(x) + hn(x), where
g~(x) vanishes outside F, and is.8gual to £ (N + 1)/x in E,; the
8ign ‘1’ corresponds to the interval (0, 7), the sign ‘—’to (x, 2x). Then

T -

B=—ifgum o3 dx — i [p(x) e-xdx = B B,
b - H

nY
far gy EYNFLIG ’ e N+ 2(N-9
B <2 (VRS < lg - B S-S0
sines ga vanishés ontside E, hy vanishes outside _Ev — Ey, f_‘_ld
both | gx| andMhy| do not exceed (N+1)/5. If we l?gt y= N—lllel,
we obtain{ B¥= O(N-"%)=O{log—"n), B'=0O(N2-V¥} = O(log~" n)
and, C,ths\{ing the resulits, nC, = O (fog*> 1) = o (1).

~A1.54. It £, and E, are sets of uniqueness, their sum £ + £,

7\ .
/may’ve a set of multiplicity. We obtain an example by breaking up the
inderval (0, 2x) into two sets £, and E,, each without a perfect subset.
Although E, and E, are {-sets (§ 11.5), their sum is not, This example
may be not entirely convincing and it is natural to ask wheihe.r the
situation is the same if we restrict ourselves to the domain of
Borel sets. The answer to this problem is not known. In the case
of closed sets we have the following theorem due to Mite Bary ).

' N Bary [1].
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If E\,E,, ..., Ea, ... are closed U-sets, their sum E=FE, +E,+..
is a {/-sef.

We shall require the following lemma:

Let € be a closed sel of uniqueness and J an apen interval
If a trigonometrical series § with coefficients tending fo (3 {3) con-
verges to O almost everywhere in 1, (ii) has parfial sums bounded\
at every point of J— &, the series converges to O al every point af\ K

We may suppose that J¢E =0, for otherwise the ‘.emm;“fol-
lows from Theorem 11.46(iii) and the remark of § 11.32. Now'Tet 3 be
any interval contained in J and without points in cosimon with €.
Since § converges to 0 almost everywhere in 2, and Kas ‘purtial sums
bounded at every paint of 3, 5 converges toQleverywhere in &
HenoeuScomvengivnty Sl — ¢ Let & (x) be akinction vanishing
outside J and positive in /. The formal &ré}iu’ct S, of & by O[]
converges to O outside J and in the setA™~¢. Since ¢ is a U-set,
S, eonverges to 0 everywhere. Taking §ntd account that k{x)=>0 in
J, we see that S converges to 0 in‘.!»,.'jan“d the lemma is established.

Suppose mow that there jsva trigonometrical series S with
coefficients tending to 0, convérging te 0 ouiside E, but not every-
where; let R be the set o.f;'po'iilts at which the partial sums s.(x}
of S are unbonnded. R js'a ‘product of open sets, for if Gy denotes
the set of poinis wh ré\{a't’ least one of the functions | s.(x)’ exceeds
N, then Gy iz an ‘c;an set and R = G, G,.. Gy... The set R is
contained in £; pytside £ the series converges to 0. Since |Ei=10
and S is not identically equal te 0, it follows (§ 11.32) that R0.
We may wfite" R=RE, + RE,+ .., and since sets which are
productfj\ét 'open sets are not of the first category in themselves ')
there .,iﬂ\an n, sueh that R E, is not non-dense in R In othel
wor:gé,"'there is an open interval J such that JR==0 and JRE,, 18
dense in J R. From this and from the fact that E, is closed, we
deduce that JRE, D IR e. JRE, = JR Ws write E, = ¢ and
apply the lemma. The series § converges to 0 almost every-
whete in / and has partial sums bounded at every point of the set
J—JIR=J--JRE ) J— €. Hence S converges to 0 everywhere in J,

contrary to the result J R =~ 0 obtained previously. This proves
the theorem.

"y See e.g. Hansdortf, Mengenlehre, 142 (Satz XD.
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11.6. Unigqueness in the case of summable trigono-
metrical sertes. In § 11.3 we obtained a number of theorems
on the uniqueness of the representation of a function by means
of a eonvergent trigonometrical series. Since however there exist
tuncticns whose Fourier series diverge overywhere, it is natura)
to ask for theorems of uniqueness for summable trigonometrical
series. We shall restrict ourselves to Abel’s method of summation »
which has an important function-theoretic significance. Since Abel's
method applies to series with coefficients not tending to Of Wwé
begin by investigating what conditions must we impose upon the
coefficients of the series considered. \ .

Of the two series >

N

(1) a) Sasinns, b ﬁw‘;{_gggrgﬁhbm,,y_m.gm
LD

the first is summable 4 to 0 for every'};“the second for every
x 2 0 (mod 2z). This shows that: {a) f?r’series

(2) La, + 3 (. e08%x 4 b, sin nx)

=1 el
summable 4 and having eetficients == o (n), the thearem of unique-
ness is false, (#) if we{drdp lhe condition a,~0, 6.0, we cannot
introduce sets of unigueness such as the set £ of Theorem 11.32.
We write ()

A/ o
A£40) X} =} @, + 2 (@ cos nx -+ b sin nx) 17,
¢ - a=1

' M L
.~'§“ flx} = lim £ (r, x), fx= lriflif(n x).

r-¥1

"
¢

Tfle\ functions f*(x) and f,(x) may be called the upper an_d lower
bel sums of the series (2). We shall prove the followmgf_[w;)
theorems, the second of which is a very special case of the first.

(i) If the functions f.(x) and f4(x) corresponding to the .Sf’rff's )
with coefficients o (n) are both finite everywhere, and if Fhxy =1 (x)
Where s integrable, (2) is a Fourier series.

(ii) If the series (2) with coefficlents o(n} is, for every x,
Summable A to 0, then a, = = =.. =0
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In the case of coefficients tending lo 0, propositions (i} and
(ii) were established by Rajchman'). His method applies, without
essential changes, to a slightly more general case, viz, when the
periodie part of the series (2) integrated twice is the Fourier
gories of & continuous function?); in particular when we have
i a,!|+';b,.1=0(n1"<1), %>>0, The proof of propoesitions (i) and (ii), as they
are stated, requires new devices, and this final step was taken by
Verblunsky ). O\

The proot of (i) will be based on a number of lemmaa‘.\lt\will
not impair the generality if from the start we assume that- a, =0

11.661. Rajchman’s Inequalities. These a e fundamental
for the whole argument and may be stated agfellpwvs. If
www.dbraulibral'ycorg a, cos nx -+ b, st

1}

#%7

n=i n ™

is the Fouarier series of o function F(.ac); and if F'(x) and fix} are
the apper and lower Abel sums of thé series (1) differeniiated twice,
then, at every point Xx, wkere.ﬂfj'is summable A, the intervals
(D F (xo) D? F{x) and ( f‘(xp.},"f*{xo)) have points in common, i. €.

(@) D2 F(x) %.)CE%), £l < D F(x) ).
e

Let x,=0 and\et F (s, x) be the harmonic function corres-
ponding to the series (1). We may assume that £(0)=0, 1. e. that
F=F{r, 0) - 0@sr - 0. To prove the first inequality (2}, itis sufficient
to show thathfor any m, the inequality D°F > m implies f* = .
We may (4166 assume that m = 0, for otherwise we may considet
F (x) -#m{1 — cos x) instead of F(x). Suppose, contrary to what

we want to prove, that f/(0)<<0. From the Laplace equation
~O 1 @Fex) 10 (0FEn)_,
N rr ox? r or or |

'} Rajehman [5].

1) gee e. g. Zygmund [14]; M. Riesz {7] was the firat to consider
problems of uniqueness in the case of coeflicients not tending to 0.

) Verblunsky [3;]

Y Rajehman {5} Rajebhman snd Zygmuud [il Verblunsky 13:]-
It can be shown that, if D*F(x,) exists and is finite, then f,{x)=r"(x = D*F{xo)
(Fatou [1]}, but, in the general case, the interval {f., *) need nat be contain-
od in (I*F, D*F); see Rajehman and Zygmund {1].
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we obtain that r 5, where the dash denotes differentialion
with respect to 7, is an inereasing function of r in an interval
ro << r-_1. Since Fr—>0 as r -1, the mean-value theorem gives
Filogr = pFl,'l, ry < r< p<C1, and hence, for a o contained in {5, 1),

Fillogr — F llogp=p F; — s F} <0,

To show that this is impossible, it is enongh to prove that

jim LS ----F-’—,<o. Let d=Ad(r,t) =1-~2rcost+r2, P{ty=}(1-0%/d,
1 dr l](}g r ;.\ "
9 (£) = {F (8} + F (~ ) — 2F (0)}/sin*£. From Poissof’s formila we
abtain w3
= ’\; '
um_".!..{--‘-'_‘il:nm-‘_ [Fo+FegSla =
(3 vidr|\i—r 2’] ryt ® 4 ww.\nQ\d'hrA]library,org,jn

= lim -I-f:p(t) gin?t=—

Fal WG

2o ~1&/"" . d |
df =lim!s o (D sin d —- P{hat)
a2 %-{:’::‘r.; ?¢) dt |
where 7, 0 <7 < 7, is any fixed pumber. Taking 7 so small Ihat
e(f)> 20 for 0<#< 7, replacing ¢(f) by k4, and integrating
by‘parts, we find that the aight-band side of (3) exceeds

2 lim [ cos t Pyt = L3 lim [ cost PAtydt =} > 0.
LR \ & g

Now, if ¢ (&)= (1 — r®){rlog r, we have

(1) \\( F_,_"}’ e (r)( rff—-)'—l—c'(r] F,

log r 1-r

Since \f\(;\)> —2, ¢{r)= 01 —r), the upper limit, for r » 1, . of
(F.{18m ") is negative, and the first inequality of (2) follows. Applying
thiséinequality to — F{x), we obtain the remaining inequality.
m“;"’ 11.802. f 2 is a linear set ol points, we shall call a portion
of P any non-empty product of P by an open interval /.

Let P be a perfect sei and {fuX)h n= 1,2, ..., @ sequence of
continuons functions defined in P and bounded at every point of P
Then there ts a portion f1 of P in which the sequence {f(x}} &3
uniformly bounded.

Let Enna(m,n=1,2,..) be the set of points where fulx) <m,
and let H,,::EL,,,,E?I,,,_Eg,m.,. The sets Enm and s0 also the
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sets Hn, are closed, Since P is the sum of all A, at least one
of the terms, say fw, is not non-dense over P, i e. is dense in
a portion /7 of P. Being closed, it contains {1 Hence |fa{x}| < m,
for # > 1, x ¢ {7, and the lemma follows.

11.603. A function g(x) is said to be upper gami continuous
it, for every sequence {X.; - X, wWe have lim g (&)< g(x). An

A—hee

impertant property of an upper semi-continuous function is that it
attains its maximum in every finite interval; the proof is immediate,

If @(x) is an upper semi-contingons function saffsfyt'u? the
inequality D*® = 0, the function @ is conveX. N

The proof is a mere repetition of the argume"rj{df g 11.310)
(with E=0). O
T RS BMbte the second integralof 1.(x)- If, under
ihe hypotheses of Theorem 11.6(i), the series 1 BO1(1) is, for a<x<b,
summable A to a continuous or, more geneRhlly, upper Semi-continious
Junction F(x), the difference F(x)— -/_g.(ﬁc)’is convex for a<x<b.

Taking account of ihe preceding lemma, the proof is contained
in the proof of Theorem 11.31(iy) ' Where we showed that. with the
notation of that paragraph, F(¥Y—f.(x) was convex; it is sufficient
to ohserve that, in view of hemma 11.601, we have 7(x)}= D*F(X).

The last lemma \w@.shall require is

11605, If thiNgelies -t g + 1, ... has Abel’s upper and
lower sums finifé) fhe series i, + y{2 + 133+ .. 65 sammable A.

o

we ,_ [8EY"Ha 4,
Ly ‘

"\u .
For Q@\{‘r):noﬁ-ulr—l—..., then G(ry=2 —r"
A\ n=l 7 0 g

Since  the integrand is bounded, we have (G (ry— G| 0 88
rAn# 5 1, and the lemma follows.

"\ “Buppose thai the u, are functions of a parameter X If the
filnction g (r) is uniformly bounded for 0 <r <1 and X pelonging
to a set E, then the series u, + yu,+ ... is uniformly summable A

for x ¢ E.

11.606. We now pass on to the proof of Theorem 11.6{i)-
Applying Lemma 11,605 twice to the series 11.6(2), we see that

) _ 5 Ancos nx o+ bn sin nx
n=l n"‘
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is summable A for every x (using well-known Tauber’s theorem
that series summable A and having coefficients o{l/n) are con-
vergent i}, we see that (1) converges for every X this result will
not he required in the proof). The main point of the proof will
be to show that the sum F(x) of (1) is continuous, a result which
is immediate if e, g- 2> 0, 8, > 0. Let

o 2, COB X+ Basinnx = 1, cO8 N} bpsinnx
P l(r’x}:d..ﬁ p LU AT VR B _fN’ p?(r,x):_z f.__..____i; ki LN
n--f 73 A=l n

We begin by proving that in every perfect set P there is g';i»arﬁon
/7, such that py{r,x) is bounded for 0 <r<1, x € [T JFor, if
7, <. 75 <% .. is a sequence tending to 1 sufficiently slowly, then
| oy X3 — Py, %) < 1, fOF Fay 7 <lfn, B KX <725 In view of
Lemma 11,605, lim p.(r, x) exists for every X ,Si?}(:é ihe sequence
oy{ra, £} is unifm_-mly bounded in & pongﬁaﬁiﬁ_{}T}yﬁgg)g.itHe
same may be said of the expression Py

Fram this and the last remark of §11.606, we see that, in
every perfect set P, there is a portion /7 in which the function
F{x) — litm p.(r, x} is continuons, s I particular, taking P = (0,25,
we obtain {hat the set 4 of digeontinuities of F is nowhere dense
in (D, 2=} N

Suppose, contrary to" what we want to prove, that A0,
First of all, 4 cannot{eontain isolated points. For, it x, weve on®,
consider the differehde & (x) = F (x) — 7:(x} in the neighbourhood
of x,. Since B{A is convex to the right and to the left of X,
(§ 11.604), the{Uimits & (x, = 0) exist, and so, in view of Tlﬂfeorem
11.21(i), ol 0) = & (%, — 0) — & (%), Hence 8 (x) is eontinuous
at x,, aud(sé is F{x). B _ i

A Béing dense in itself, the set 4 ot limiting pomtS.Of 4is
peries 1t {«,8) is any interval contiguons to 4, the funcﬁtmn 5(x)
igheonvex for » < x < B, and 8(x+ 0y=8(x), 8(E—0r=1 (B). Let

(P=J 1 be a portion of 4 in which F (x), and so also 3 (x), 18
) eontinuous; J denotes an open inte

rval. Being convex in any
interval belonging to J— /I, the funetion 5 (x) is UPper semi-
continuous in J. The same may be said of F(x). Applj.nng Lemma
11.604, we obtain that &(x) is convex, and so also conilnuous, in J
This shows that F is continuous it J. Hence 4=10.1¢ F is
everywhere continuous.

) Spe e g Landauy Dﬂrste’ﬂm.lg and Begrﬁndung.
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By Lemma 11.604, the ditference §(x)=F(x)—7y,(x) is convex
over (—o2, o). To complete the proof of the theorsm, we observe
that D2F (x) = D¥(x) 4 D% (x) = 7, (x} + D3 (x) exists for almost
every x and is integrable (§ 11.31(i1), (v)). Let f(x)=Max{fix}, D°F(x)}.
Using Lemma 11.601, we see that F(x), which is contained between
f(x) and fYx), is everywhere finite and salisfies the inequality
D (x) < f(x) < D*F (x). By Lemma 11.31(iv}, F(x) is of the form,
11.3(1); this, as we know, proves that 11.6(2) is Z|f], and the
theorem is established. Incidentally we obtain thai, under\:the
conditions of Theorem 11.6(i), f,(x) = f(x) for aimost o¥ely X,

11.61 V. If the conditions of Theoram 11.6(i) are saﬁc’gf«f&d, except
that flx) and f'(x} may be infinite at a finite nupdder of poinis
Xyu Xy, wee o Xay the series 116(2) differs from a quzf:he} serigs by a
lineagrcombbratingr ofythegiaries D (x —xi), £= L3N k, mhere D(X)
denoites the second series 11.6(1). PN

We may again assume that a, = \Hepeating the proof of
Theorem 11.6(i), we obtain that F(x§\§ everywhere conlinuous
and that, in each of the intervals e, X, F(x} is of the form
11.3(1), with A and B depending) 0n /. The points x; may be
angular points for the function¥ (x). Let D,(x) denote he series
cos x 4+ cos 2x 1 ... The sum of the series D,(x) integrated twice
bas an angular point fqg(éc:ﬂ and nowhere else (mod2z). There-
fore, if we substract f@n’ll.ﬁ@) a linear combination of lhe series
D{x — x), the fxm’ct\mn F eorresponding to the ditfecsnce has no
angular points, i\e. we shall bave the formula 11.3(1) with A
and B eonstagti‘tlimughout the interval (0, 2z). It foliows that ihe
difference €on¥idersd is a Fourier series, and the theorem is
establishgd) “As a eorollary we obtain that, if the series 11.6(2),
with g M+ (841 = 0 {1), is summable 4 to 0 for x £, the series
is’a\.,‘c’dnstant multiple of D {x — x,).

{;3 ' 11.62. Theorem 11.6() folds even if the functions {(x) of fH%,

r both, are infinite in a set E, provided that £ is at most engmet-
able and that F(x) is smooth in E. 1t is important to observe that
the latter condition is certainly satisfied when a,. 4 bz! >0 The
proof may be left to the reader, since it is wlholly similar to that

of Theorem 11.6(i), if the lemmas of § 11.31 are used in their
complete form.

W Verblunsky (3.5 of also Z ygmund [14].
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There are other generalizations of Theorem 11.6{i}. The reader
interested in the subjeet will find them in the papers gquoted.
Here we wili only mention one of these generalizations, viz. that
all the theorems of uniqueness established in this chapter hold if
integration is understood in the Denjoy-Perron sense'). This is due
to the fact that all the lemmas on which our proofs are based
bold for the Denjoy-Perron imtegral. Similarly, the Denjoy-Perron
integral may be introduced into theorems on localization. Far™
example, Theorem 11.46(iii) remains true in the new care. a

28
7'\
11.7. Miscellaneous theorems and exampies. g >

a

1. Show that Steinhaus’s theorem, i, e. that ,,'( 3

I ¢
im |a,cos nx -+ b, sin )= lim Y 3P,
—pom - oG
Www@braulibraryorg.in
exvept in a set of mesare 0, can be proved by théymethod of § 1111,
{Observe that, if #t is & positive integefr.x\E an arbileary set of poailive
meastre, and m, —+ =, then (\Y

N 3 Cope [2mY =
{1 [coszm (g, x +- oyt =+ E | ' i ) o=
and that, for m large, the righiil{a’nd side of (1) is of order m 7).

2, Theorem 11.21{1) ({émains trus it a, and &, are O(l/n). Hardy and
Littlewood [20]., ,{ )

[3upposing tha*\}l.i(l) converges to 0, we write

= . #9NA _ o= T— L1 o
PO o= o) T =34+ 3 =pP+0Q
» 2t e S . =
,\ e a=l  m=RN+L

wheré\ N2 [1/], and #>>0 is an integer. If & is large, them Q) is :Tﬂ."
Abells\MYansformation shows that, for fixed &, P00 with f. 1‘!9’[“ 111 )b;:
summable /. to 0. Conversely, if thal series is summable L, it is somma

£1C2) (§ 8.5} and. as the argument of §11.21 shows, its partial sums are bound-

h
3

d. Hence it s summable (C,1) (§ 1044) and it is sufficient to epply the
Hardy theorem of § 3.23).

3. Suppose that |a,|-+!&,|=0{}/n) so that 11'1.{1.) is the Fourier sar:
ies of a function f{r). A necessary and sufficient condition for the convergt
ence, at a point x, of the series cenjugate to 1L1{1), ie the convergence O
the integral

i) Besldes the papers quotad, see also P. Nalli [1].
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™
1 psflet ) —Flx—¢
Lifed0=feon,
=y gt
which represents then the sem of the conjugate series, Hardy and Little-
wood [20].
4. Let the series 11.1{1} be summable 4, for a< x < 0. Lo a non-nega-

tive fonetion f(x). & necessary and sufficient condition that the function Fix)
should be integrable over {a,#}, is that the series

N
. o 2 AN
"} Y oax -+ 2 {a, sin nx — b, cos nx}in L™
m=1 ;.\
should converge for x =¢ and x =4, Verblunsky [4. N

{Let F({x) be the sum of (*). F(x) ia monotonic in ihezf.uterior of {a, B,
and fel{a, b if and only il F{a+0) and F{F—0) are fini}& Sipee the coef-
ficients of (*) are o (i/n), it is sufficient to apply Thededmvil 21011}

sw et dbradibraty 9eE ik onometrical sepies Jwith eoefficients o (1/n)
and O(l)n) respectively. If §; converges to 5, i=T2Pat a point x, the formal
product of &, and S; converges to &5, at that/point.

As the example 5, = §; == T n—1sin nx{ A== 0, shows, the theorem js not
true if both factors have coefficients O (3fa).

6. (i) If the sine expansion ag'Eg function f{x), 0« x<n, has coeffi-
cients o (1/n), the cosine expansion®fyf{x} converges ai the point x=10 and
has the sum 0. (i) If the sine expansion of f({x} has coetficients o{1/r) and
converges uniformly in the peighbourhood of x =0, the cosine sxpansion of
f{x} also converges uniformly tn the neighbourhood of x = 9. (iii} In the pre-
vious theorem the réle ofi,gfne and eosine series may be ipterchanged, pro-
vided that f(0)=0.

iTo prove (i}, €0nsider the product of the sine development of [ by the
Fourier series of G\HB Tunction signx, |x; <=}

1. Give,{g’fuuction F(x), we write

\V L
\/ A5 (x 2m =

S

Let)A(x) be the som of ihe series 11.6(2) integrated term by term k times.

e /shall say that 11.6(2) is summable, at the point x, by the &-th method of
Riemann, or summable R, to sum s if the function F exists in the peigh-
bourhood of x, and it

)F(x+{k_2m).

¢ r3
L] fd ol B
o0 nim L2 [1.; G+ 3 (2, cos nx + b, sin 1) T-n—) ] =5

B (k)% R0 P} L, mh

If la, ik, |=o0{n%), a>>—1, and if the series 11.6(2) is summable
(C,u) at the point x, the series is-alsc summable R, £ > -1, to the same
sum. Kogbetliantz[2. Verblunsky [5]

{A consequence of Theorem 10.5.10].
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8 M la, -tk =0, r=012., t=¢r41, and if 11.6(2) is sum-
mable {f,r), at the point x, 1o sum 5, we still have the rolgtion ™,
fends to U through a set of points having 0 ag a point of density.

See Rajehmanand Zygmund {2 lp the sams Wiy we can gener-
alize Theorem 1042,

9 Assguence {an} is s8id to be summable ;' Lo the limit 5, if the
EXPTeREINn

where A

n=1 " nh N
convergss in the neighbourhood of # =0 and tends ¢ 0 s k0. Shoy.\t'l{?ﬂ,\
if {a,! converges, it is also summabie B, to the same limit. .\
i%ce § 1.8.3; the theorem is practically identical with Theore@“flﬁ(ii)]‘
i, The wmethods R, and R, are not comparable, Sea,h{'arcinkie-
wicz [21. o
11. The eonditions imposed wpon the Fourier coefficiedis of the func-

tion +{x) of Theorem 11.49 are unnecessarily St'i“Wi‘QHM‘EmHEE}&QdPETm
pose that »''(x) is continuous and of bounded variatia,™

{Coneider the formula 31.49(3) and uss Tt}eo}efﬁ 2581, [t ia also enffi-
cient to supposs that WMeLips, o >0 O\

12. Let the geries 11.44{1} have cqqtfici‘ents o{n®), a > —1, and let &
be any integer > %31 1 F{x) depotessilie sum of the series 11.44(1} Inte-
grated term by term k times, and JfU%x) e a function which is equal te 0
vutside (& 6), equal talin (a’, &), ;t{ﬁé’-(b‘(b. and has a sufflcient num-
betr of derivatives, the differences

e

" ...\ e b &
Ya T rnveg L pat— o dt,
k=g XN = aj dfk

N\

2. ) & "
NS -Y _ﬂk "Fore LD u-od,
:;ésk(x} " 2! RN i

are unifarm]Mmmahle (C, =) aver (a’, 8", the timit of the first being 0.
SeesZygmund [11}, where the second expression Is written in a slight-
ty ditfgfent form.
\15 Let S be any trigonometrical series with coefticients tend.in_»z to 0,
dBdNGL (v} and f,(x} be the upper and lower Abel sum of 5. 1t F* in inte-
Era le, aod if f, and /* are finite outside a clossd set £ of measure 0, the
difference § — 3 (7% converges to O outside £, If, ip particular, E is a U-sst,
then §= .2 (.



CHAPTER XII. Q

O\
Fourier's integrals. . O
12,1, Fourier’s single integral. Given ,a:f«‘znétion Fx),
~ o0 < x < o3, consider the expression

www.dbraulibrary.orgin .

M So=SsnH=L [r@© S"‘—jﬂ’i@ dt, w>0.

This integral exists if |f(t}'|ﬂ1 -+ LE]) is integrable over
(— o9, o), and so in particular if;feL(— =0, oa), or, using Holder's
inequality, if fe L7(— oo, o0), £3%1. Tt is an importsnt fact that,
if f(x) satisfies conditions\¥nsuring the convergence of Fourier
series, then S,(x)—f{x) a8\» >co. This result is known as Fourier’s
representation of a funetion by means of a single integral, and

is a consequence 0\\{1113 results established in Chapter 1I and of
the following theerem:

Let us fix<an arbitrary inferval J, = {a, a4 2r), end let fd(x)
be the fanetion of period 2x, which is equal to f{x) in Jo. We sup-
pose that [f Q) /(1 + | x[) € L{— oo, o). Let s.(x) = Su(x;fo) be the
partz'g,{\s ms of @ [fd. Then, for x belonging to any interval Ja
interior to Jo, the difference S.(x)y — Sy,\(x) tends uniformly lo 0 as

i Sool),

3

12.11. We base the proof of the theorem oo s number of leminas. Ff‘rsl
of all, i is safficient to eonsider, instead of Sln — s[m], the difference Su_ — Hujr

whare s; are the moditied partial sums (§ 2.3). To fix ideas, we assume that
a=1{, and write Jy, JI, fu(x) instead bi J,, S Folx).

") 8ee Hobson [3], Pringaheim 2).
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b
i IFedela, By—eee 2 < mn, then T ..—_f Jts) e—iw! dt 20 a5 woem,

Trenaforming the wvariable of integration we may plainly suppose that
0La<6< 2r. Patting g(8) =0 ouiside (a,4),and applying the deviee of § 221,
n

we obtzin, for w large emcugh, 2ir, | gf!g(:)—-g(:‘}.qw)m., 0.
9

(if] If g (&) =F(E) ht), where fe L(a, B, and A, n<lt<b, is a uniformpy
bounded and uniformly continuous function depending on a parameter x, jthen
1,0 wniformiy in x. -

'\
Buppose that 0 <s<la<b<2=-—z and put /() =0 outside, (a}8). Let
D Dbe equal to & for £<Cc and ¢2»2nr—s<, and be linear orie ¢ < g,
bt 8x—e The mew function A (#) is uniformly bounded hpd uaiformly
A

continuous and, sinee .~.\
i ¢
[1s@ e ideso,  sax| B ANPHE orgn
a i <&
\N

the integral majorizing 2|7, | tends uniformly io G a8 @+, It is plain that
the resuit holds if h{¥) depends on more than one parameter.

(ill) Under the conditions of Thedrem 121, the difference § (x)— Sy

tends uniformfy to 0 for xed). Fc:r,,’i} [wt=n, w—a=uy, then
ORI T psinfu(r—8 ey
(1) 8,00 — 8= g — [ fO— e a.
™ LN

To ahow that the last integral tends uniformly to 0, we break it up
ioto two imgra,s’.p"a,;d {), whare P is extended over some inte.rval {— A, A
and J over (-»;éo,\-—- Ay (A, =), If A 18 large enough, then | Q'<%e for
xeJ). Since Hhe function &, u(r);-zsinrsutx*f)f(x—ﬂ ia upiformly continuous
and unif rm“fy:hounded for 0<u<1 and xe/j, an application of (ii) shows that
1P, ,& | P4 Q| <a for >y This proves the lemma,

2 8 R

A Mmoment's consideration showa that Theorem 12.1 is a consequence of
”{\iii?\irid of the following lemma:

NJ () Let A0)=f1(n)+F"(0), where 1) =) for £eh, f(I=0 for 2&e

Then 3" = S (%3 f1y— S:(X;fo) -0, SH(X;)'”)‘”’O as n-» s, upiformly in xef

Let £,(1) be a faaetior of period 27, equal to Hfx—0—1% c.tgg(x:—-r).
for 0.t < 2r. Since B [A,{t-+n) — ,(0); 0. 2¢] - & with 7, uniformly in xe /o, au

on
- ginx —int
argument similar to that of § 2501 shows thatd, = ‘\—;—_[f(f'} e a0
g

uniformly in xeJy. On the other hand, $,(x/")=U,tVy, where U, s equal to
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g

T [f(t) -—dt and V, Is a similar integral formed for the interval
r—1
i

{(— =0 To show that U ‘<4 ;V |-»0, we proceed am in the proo! of (iii).
Thig comnletes the proof of Theorem 12.1.

12,12, Theorem 121 holds If () is integrable over any finite interval and
if, moreover, f{1)t tends fo 0 as >t and is of bounded variation in the neigh-
bourhood of t =« ). N\

This last condition means that there is a nomber 8 =10 anch thh{f is
of bounded wvariation in (— =, -- B} 2nd in {H,==). Withont inza nf .genera!lty
we may assume that f(t)/ tends monotonically to 0 an ¢ >4 s?‘| = A, for
every f satisfyinpg the eonditions of the thecrem ia a sum m! Qxyo functinns
satisfying this more stringent condition. p,

The proof of the theorem rups close to that of 'Eh\oram 121, and we
nesd not repeat the whole argument. The proof of the’ Jlatier theorem was
bazed’ vitvIdbAUl i BEArAnArEVINGE § 12.11. Those lemhs held vader aew coa
ditions, but in the proofs we must now apply the ‘#ertnd mean-vaiue theorem.
For example, to prove Lemma 1211(ii), we b(e‘dk up the right-haod side
of 12.11(1} into three integrals extended OVEN, (—‘m= — AY, (= 4. A} und (A, =)
respectively. The last of them is equul ta the limit, for A" - ==, of the expres-
sion 3

1/'1'“) \

(1)

—ginn{f — x) 4t

- {

Applying the second mean-v@iue theorsem to the factors F{#}/f and it — x)
and observing that f{Ni{+D as #->, we ses that {1) fends to 0 aa A=+,
A’ +w<, This shows th‘a{\he integral over (A, =) exists ans thar it rends to O
as A —we, uniformly ii\xef, and w21, The reader will have po difficolty in
compleling the pmbj:'

12.2, ° %urler’s repeated integral. Suppose that |f 6}
is integ\ jrable over (— oo, ov). Then the right-hand side of 12.1(1)
is equ‘al to

¢ .\ 3
N

< Yy L = ff(z) dt [ eos s(x—tyas =1 [ s [F@&ycoss(x—tyt,

the inversion of the order of integration being cleariv justificd.
Hence S,(x) is a partial integral of the infinite int gral

Y Pringsheim [2]. The condition that f(t) +0 with 1/¢, is neces-
sary, for, if e. g. f(£) = {, the integral 12.1(1) diverges.
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1 Ll oo
(2 ;fds ff(t)coas(x-—t)dt:
i} —_—
(3) =’[ {as eos $x 4 b gin sx) ds = ffgemds’
0 - tag
whers

_1 7 1

& a= ';;_Zf“) cos st df, bs_-—%[f(r) sinstdt, o
N\ ©

) cs=i_- Jrwe—irat=tia~m). N

2= 3,

7

A
Tha expressions 4., b,, ¢, are analogous to Fo‘fﬁ%r coefficients:
Put & is a continuous variable and %@@Fqﬂlﬁiﬁ?g‘,’&} rical
integral of the form (3) instead of & trigonOmétrica) series. Given
a function f{f), — o <{# < oo, such thgrtx\fh'e integrals (4) have
a meaning, we may consider the integral (3) or, what is the samne
thing, the infegral (2), and ask in\wbat sense does it represent
f(x}. The iniegral (2) is cal[ed?fourfer's repeated integral, Tt is
plain that if we have (1) foi\ 8very w, then the partial integrals
S.{x} of (2) are given by the formula 12.1(1), i. e. the problem
reduces to that of representing the function by means of Fourier’s
single integral, a problem which, in the most important cases, is
settled by Theorem}}‘&j and 12.2. The formula (1), however, is
true only undep,~§ertain conditions hearing on the bebaviour of
J (@) not at igdi€idual poinis but in the whole interval (— o, oo);
more preeigely,’ in the neighbourhood of {= 1t eo, This causes
the rang¢ o application of Fourjer’s repented integral to be more
restriciddthan that of Fourier's single integral ). The formula (1) is
certainly true when §fj e L (— oo, o), and so, in view of Theorem
A0, "we have: If (f ¢ L(— oo, o), then S5 f)— 8% fa) > 6,
Naniformly in x € f), where S,(x) denotes the partial integral of (2),
and fo, J,, and 7y have the same meaning as before.

') The range of validity of Foar ira repeated integral can be consider-

ably extended if we suppose that thy integrals (4) are summable in some
sense, e, g. summable (C,#4) (§ 12.3). We shall not consider this problem
here.
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1221, The last Hreorem holds if f(t) is integrable over any finite interval
tends to O with 1/t, and is of bounded variation in the neighbourfood of £ =+,

Asstming, 83 we may, that f{f} iends monotonically fo 0 as £ 4w,
tt172 B==0, by means of the gecond mean-value theorem we verify thal the
jnner integral on the right of 12.2{1} converges for every 52> {bui not neees-

sarily for 5=0), apd that the convergence is uniform over zpy rabpe
<5-:-’:s(u: Hence

) _-[ds[f(t) cos s (x—t) dE= - ff(f)—sl—u—‘ﬂ{m )dt--— jf( Rt sm”x B
= x—¢ ,3
We wﬂl show that the second integral on the vight tends te O \N{h 0: for
the proaf we break ud the integral over (-—w, =} into three mtegyal\a_ extended
over {— =, —dA), {(—A4. A}, and (4, respectively. Since the inigp 9 sal of (sin &)fu
pver any finite ioterval is beunded, an application of the qemnu mean-value
theorem shows thal, if 4> 8 is large eruough, the f}rst,,‘aqd the third of the
three integrals are numericaily less tiian & given « >0, Siode, for fixed A, the se-
cond integral tends to 0 with 3, the last integral on thehrighi of {11 is fess than

3¢ in ahsolute value for @ small enough, i e.it tendgic ¥ Thence we abtain 12.2(1)
(Wmﬂﬂnmdkﬂ?bﬂ}ﬂ} QS Y owever the oufer mmgral ot the r:gf:f is an improper

uly

infegral: j lHm {. Thatthisis essentla] audthatgu}—j fiheoss{x—1)d
—)+Ox

—a

conmdered as a Junction of s, may be ;uon-mtegrab]e {in the Lebesgue sense)
in the neighbourhood ofs_(] may be seen from the following example.
There is u seguence a, = d, .. "W such that the sum of the series Ya, cosns
ia oot mtegrable in the neighpourhood of s == 0 & 51200, Let x =140, f{ f) =g

for n~1 = \t‘xn—iﬂ.’;, n-.i, vy FID =0 for D EE F— =) Then
sgs)fisints =% a, cw ‘4nd g(s) is not integrable in the neighbourhood of
3 =20 [see also § 5.3,4).

This result shoWws that, wnder the hypotheses of the theorem stoied at the
beginning of th.e Sect:on the ourﬂr integral in Fourier's repeated integraf must be

understood“@ \re sense lim [
\ tores
50
&

“12.3. Summability of integrals. 3¢ far we applied summability to

ﬁer.es culy, bot a similar theory can be coostructed for integrals. We start
\ Xuth the following lemma.

Let (x) and U(x) be two functions defined for x =0 and mtegrab(:,’ over
any finite interval (0, a}, suppose that U {x) =0 for x>0 and let ®(x) and ¥X}
denote respectively the integrals of 2{y and {8 over the interval (0, X). Then, if
F(x) > and ¢ (XU (X) 5 as x> o, we have D (¥ {x) s

For s=0 the lemma was er‘ablished in § 1.71. If we apply that

result to the functioma 3{x)= ‘.?(x} -8y (%) and §(x} =1 (x), we obtain the
ganeral Tesult. 3

Y CL Tonelli, Serie trigonametriche, p. 413,
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Ve write Dylx} =g (x), and denote by d(x), k=1,2,..., the fotegral of
@4ty over D <Tx Blmilarly we define ¥,(r). It ts Plain. that, it
D0} fxj - s 88 X Sos, then DU (x) s for L2k Suppose that p(x) =1
then ¥,(x} = x"/kl We shall say thats in the {C, k) lmit of ¢(x) ap x o
and write (C Bo{x) =5, 1f cbk(x)k!,-’x"—»s i e if

¥
oY) kx*‘"f(x—t)"“‘r,o(t) dog 48 X e,

N\
Now we may take (1) as the definition of the (C &) limit for every (}0
integral or fractional. By the (C,0) limit of the function ¢(x) ag & ¥, we
mean the srdinary limit. Since v ie integrable over any finite mterval 10, a), the
left-hand side of (1} exists for almost every x {(this icllows m}m the reanits
of § 2.11) and is iteelf integrable over (0,4} I p(t} 18 bpunded over any

finite interval—a most frequent case in appileationa— thilelt ~hand side of (1)
exists everywhere.

(v If e 20, 8>0, and if (€, 0) o {x)= 5, then\G, a+$)?(x}—>s

- an
Wa zeaume that >0, In the atgumen{"r% sha]ﬂ ?elﬁlli e the’ tormuin
1
f"(a)f{Bl
€2 a1 — - 1:1;;
) J R

’.

a prooi o! which wili be found in most taxl books of Analysia ). Lat us
dencte the left-hand side of (I} by k¢k(x) We begin by proving that

N T etB 1
(53] e = e — ) Tt
.“ﬁw Fmr@J“
For the iniegral or!\the right of (3) is equal to

) oM . _— ]
j(x+:}f"”‘.‘d:j?(u)(r—u)“"au =fap(u)du{f(x—:}5 Lt —m® ldt}.
1

”\Q
The: }ﬁ‘~»rﬂu5f0rming the variables fn the inner integral om the right, and
l-lsinug\{") we obtain (3)

2N \ Now, if (C,@)9(x)~s. then Dy = s £ () £, where e (1) a8 too,

e

“Sipee (4 1) = AF (A}, we obtain from (3)

) {at-f) P (x)fx”‘+B s xS f i e —oF 7 at,

where C denotes a constant. Let e >0 be an arbitrarily smail numb::n:::
Yot |e{)|< ¢ for t>>x, Breaking up the lsst integral into Iwo, o

: lation
) The formula (2) ean also be obisined from 3.11(3) and the re
A P a4 1).
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over (0, x,) and {xg, x} reapectively, the reader will have no ditfieslty in provy.
ing that the tight-hand side of {4) tends to 5. Thig completes tie proof of
the theorem for 2 >0 1), ,The cage a =0 jg atill simpler.

In the foregoing discussion we supposed that x-sec bnt a similar
theory may be developed in the case of x tending to any other Iimit. For
example, the (C, ) limit of % (x} for x >4 0 may also be defined by (1), with
the difference that in that formula x now tends to L0

. A\
Given an integral J— [f(t) dt, we shau say that it is suimmable (g, Ry,
o AN
X S\
to the value s, if we have (1) with o (x) =[f(t) df, 1. e, if « \\
0 £ %
x "  § 3
—k 3 - - KT
(5) X 6/(): Y (B dt -+ 5 ag x - ..M'\\

This definition presupposes that f(x) is integrabie oveeany fiaite interval
The left-hand side of {3} exists then for aimost everyw, even if 2> —1. In
view of (), summability (C.oq) im lies summabilityl{Gya 4-R), o w0, B0, fo the
saﬁfé\'\b‘d?uéﬁ‘)’?u bfaryofg th 77 A

Given an arbitrary series (Ot a1, W6 U, = u,+-z, T e+ 11, and let
Ulx)= U}, tor nREX<n4+1, =101, .. Iidor & oo the (€, &) Yimit of tix)

exists and is equal to 5, we shall sag\that the series {/ {9 summable by
M. Riesz’s method of order z, or sum‘m':i‘bl’é {R.a). to sum 5. M. Riesz has shown
that the methods (R, @) and (C,%) arey‘equivalent 3), L. o, if a series is summable
by one of these methods, it f5 sumtaple by the other to the same sum. The proof
of the general resylt is ratherﬁmmnlicated, but the special case o — 1. which
is of independent importange, is fairly eusy and may be left to the reader as
an exergise. O

Since, tnder the Wy Pothesis of Theorem 12.1, the (€, 1} limit of the difference

Sw(x) - S[m (x) exigis and is equal te 0, and since Fourier seriss are summable

N

{C, 1) nlmost ever{\);here, we oblain:

Lnder ;:‘re\:hjf;rothzsis of Theorem 121, the (C,1) fimit af Sw{x) exists al-
Mmost every # and is egual fo S). In particular, this limi¢ exists and is equal
o L IFx 0+ f (x —~ 0] at every point of simple disconfinuity of f. It extsts
um'fo:w{y \over any finite inferval at all points of which f s continwous,
o~

s}I‘n the mame way we may complete Theorems 1212 and 12.2. If we
nﬁume M. Riesz's equivalence theorem ig its general form, we may repizce
summahility (€, 1) by (€,3), 3>0. Al these results ean however be obtained
independently of M. Riesz's theorem, by an argument similer o that of § 3.3 4%

) The result holds for § = oo,

*} The result holds for a1,

) & proof will be fourd in H obsoen's Thesry of Functions, 2, p. 90,
) See e g Hobson, ioe et p, 737,
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12.4. Fourier transforms?). Ch anging the definition 12.2(5)
slightly, we shall write

(0 F(y) :~—,.1: f () e dx,

where f(x) is now a complex tunction. When f(x) is represented
by Fourier’s repeated integral 12.2(2), we have
AN
@) f= —]7; f F) e dy, ~A
the integral on the right being defined as lim f The function
wpoa L6
F{y) is called the Fourier transform of f(x), it ,}xtsts for every

x it fel(—oc, o0). We shall now prove that
‘ckhtrauhbl ary.org.in
() {f F{x) e L3~ oo, o), the mregml n (1) converges, in a

eertain sense, to a function F(y)el.?(— ,o0). The funciion F
satisfies (2) and the relation

N/

3) / [ny)é*.g}f‘é’ f e dx,

Let S denote the setrof step-functions f{x) which vanishor | x|
large. If fe 5, we defm‘& F by the formula (1) in all other cases
we shall define Fs\l\dwectly We begin by proving (3) for fe S,
Then, for o> 0

@ le dy~~— [ty [Foeoax [Feyemsdr~
—ip, & Tip oo —a

’\“‘ fLL
N 1 f [1f e dxde [ ene—sdy =

Ny e e ~u

=L j [rw7 I E =B eaw =2 [ 709 Sy 1),
where S, is defined by 12.1(1). The above transformations are
perfectly legitimate since the integrals are infinite im appearance

'} The results of this section are due to Plancharel (U], {2]; see also
F. Hiesz [8]. Interesting generalizations will be found in Watson (1]
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only. Now observe that, in the case considered, S (x; ) is uni-
formly bounded in x and w, and tends to f (x) as w -+ oo, except, per-
haps, at a finite number of points. It is sufficient to consider the case
when f is the characteristic function of an interval. Butf then the
result follows (independently of the more difficult Theorem 12.1)
{ sin
4
integrals of the last integral are bounded. Comparigg*\the
extreme terms of (4), and making = » o3, we oblain the eguatfan(3),
by Lebesgue’s theorem on the integration of bounded sequences.
The formula (1)} defines an additive operation F=7%{7]. This
operation is actually defined for functions f beloggils to a set §,
which is everywhere dense in the space [*(— c\:.\',‘zx’o} 1}, Hence, in
view of the formula (3), valid for fe S, and the remarks of
§ 9229 willbrogibationof®ifl may be ext,eh%ﬂ, by coniinuity, lo
the whole space L}(— oo, o), and this ‘eijténsion is unique, This
operation is of type (2,2) and its modutut’is equal to 1. This means
that, for every fe L%(— oo, o9), we have (3} with ‘=" replaced by
‘’. To prove that equality af{fuﬂ]ly oceurs, let Fel® foe§,
n=1,2,.., W f—f.]-0%), Fo=T{F|. Since M [F—F,]< N[ —F:]~0,
Minkowski’s inequality gives™ ¥, [f.] > M[F], Ma[Fn) - V| F]. This
and the equations &wﬂ[f{= W {Fa] imply M,[F]= BLIF} i e 3)
It remains to proye (2), which may be writen f(x)= I*T[f],
where T denoteg Ih} operation we obtain from T by changing
the sign of y. 'S"!nce the operations 7 and 7' are continogus in
the space L%(%85) ~o), it is sufficient to prove the relation f=T7"T[f]
when f e S,gr/still simpler, whén f is the characteristic function
of an intérydl (a, b). Then F(y) — i (e — e—¥2)/y2z y, and
o o
(y'Y This is a special case of the more general and difficult Theorem 9.214)
An” independent proof runs as follows. Let 5, be the set of functions
¥ (£) € L*(— ==, =) which vanish for | x| large. S, is dense in Z%(— o, =), and 80
it is enough to show that § is dense in 5,. Let feS,; tranaforming the varjable
%, we may suppose that f(x) vanishes outside (0.2=), Then there is a conti-
nuous function s(x) such that W,[f—s; 0.9n] <7Ye (§ 4.28(1)). M s(x) is 8
#tep-function vanishing outside (0, 2r), and such that M,ls — s; 0,25] <C Y, then
ol f - 57 — oo, ] < 2,
¥} The Stieltjes-Lebesgue integrals considered there reduce to ordinary
Lebeesgue integrala.

") We write T,{g] instead ot P,ig; — =, .

: dt=1{r and from the fact that the partial,

from the formula f
: 1]
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_1__. ixy :_1_ hsin_():_T-a):]} 1 main_{b-—x;y
(5) ;z':zE_a[F(y)e dy “f S v+ 1'_Uf =gy,
i. e. the left-hand side of (5) is equal to 1 for g < x < 4, and to
U for x<<a and x> & This completes the proof of (i), if we take
for granted the result, which wiil be established below, that,
whenever the integral defining the teansform of g funection g% L

converges almost everywhere, it converges to T g). O\
Ia the previous argument, the operalion 7| f] waﬁ.@gﬁned
direclly by (1) only when J€3; to define T[] for gunerdl f we
used conlinuity. We shall now show that, if ge/(— ~{=) vanivhes
ouaitside some interval {(— 4. A4), then Tlg] may stip \be defined by
the formula (1). For let G (¥)=Tlg] and let G‘bf) be the value
of the integral in (1), with f replaced by g. Rt zrix). 7 -. 1.2 ..
be 2 sequence of step-functions vanishwmgmigghf,mﬁyd]}gﬁmd

such that Mg —g,] +0. If Gl y) = ?}[g;], then M,[G - G,] +0
and, & fortiori, W,[G — G, — w, o] »08 for every o .>0. On the
other hand, Schwarz’s inequality shows that Galy) tends wniformly
to G(y} over any interval, and SV W (G° — G — o, w] 0, This
and the relation W,{G— G, ~ el -0 show that ((y). G tor
—w-<y<"w and so also foRs- oo <y < o
Let fel®>(—co co)bgd 0> 0. We write
N\

then F,(y) = F{f.]. where Fulx) is equal to f{x) for x < w, and
to 0 eisewl\épé. Since WolF, — T[f]) = M[f, —~ fi+0 a8 @ » ~,
proposgition i) may be restated as follows:

1) “For every fe L¥— oo, o0, the integral in (1) convergres in
medndto a function Py el? (— oo, ™), that is W[F—F,] +0 as
mf-éz,—\v ’-\a The integral in (2} converges in mean 1o f(x), and F and
\} satisfy the Parseval relation (3).

Since MIF — F,) - 0, there exists & sequence !{wy} such thtlll

Fu (¥}~ F(y) for almost every y (§ 4.2). Therefore, if the integral in
(I)kmrwerges almost everywhere, it converges to the transform of f.

1t is not difficult to obtain a formula for F(y). Let ®(y)

and P.{y) denote the integrals of F and F, over (0,y). By
SChWﬂl‘Z‘S inequality’. | D (y) - ¢m(y)} “~< y‘j' q)ti[F - Fu.-: 0! ."] * 0|
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o, @ (3) =lim B,(9). Since B(3) = ]7;;_{ 70 ‘%’m;} dx, and

@(y) = F(y) tor almost every y, we obtain the first of the form-
ulae

df1 7.,  ew_ a1 7, ev-1

@ F) @bﬂi&)-u¢+f“)mbﬁlﬁ”g;@L
The second formula, which correspeonds to (2), may h,e~gb-—

tained simiiarly. A
The formula (2) tells us that to every f(x)e LY— =, \e0) cor-

responds a function g (3) € L¥(— oo, o2), whose transforin is f (%)

(an analogue of the Riesz-Fischer theorem). It Suffices to pnt

g{¥) = F(—y), where F{y) is the transform of.'f:}x).

1241, If f()elP(—oo, 00), 1 <<p 2, theNintegral in 12.4(1)
conergesapl bwan - angitndex p' = pi(p — 1)/ 6"t function F(y)ec L”
which satisfies the equations 12.4(7) andbhe inequality

W Wﬁw”y,ﬂmﬂm”l

This is an extension toFotirier integrals of Theosem 9.1(a).
We first observe that the férmula 12.4{1) defines a functional
operation F=T[f], whf‘ﬁ’fe L{—0o, o0} or fe LY—oo, =), Using
the notation of § 9.22, we may say that 7 is of type (i, ~) and
of type (2,2), and that M, = (2x)—", M, .. — 1. Hence, by Theo-
rem 9.23, the qpe:ration may be extended, s0 as to become of
type (9, p"); andlM.p 1y < {22)5—¥2. This gives (1), where F=T[f].

Let fwj’ﬁa'\;e the same meaning as in § 12.4. If f ¢ £ then
fuel, aud 30 F, = T(f,] is given by the formula 12.4(6). Since
W TEAN= ] < My v Wl f— £,]+0, the integral in 12.4(1) con-
verges In mean, with index p', 1o a funetion F(y) ¢ L. Arguing

L4830 § 12,4, and using Holder's inequality instead of Schwarz's,
N\ ¢ obtain Lhe first formula 12.4(7) (cf. also § 12.5.3).

To prove the second formula 12 4(7), observe that, if f{x)} is
absolutely integrable over {— oo,ov), then the Fourier integral of
f may be integrated formally over any finite interval. This fol-
lows e. g. from tbe fact that Fourier series may be integrated

L]

) Titvlimarah [6); see ulao M. Hiesz [at.
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formally and Theorem 12.1. Since Felri~o, o), P =1, the fune-
tion equal to f(x) for |x| <& and to 0 elsewhere belongs to
L (~ =20, 00), and 5o, if x| < a,
1 f e 1 jc'f(r) e dt] dy= ! j?""’_ Y
2r. iy g } y“yzé.._ vy " ) ay.
Since Wy[Fy —Fl -0 88 a oo, an application ot Hilder's inequdls,
ity shows that we may replace Foly) by F() in the lust -
tegral, and the second formula 124(7) follows. This complétes
the proof of the theorem. O

[ Feydu=

12.42. The result which we obtained is, in one téspeet, incom-
plete. Whereas it was proved that Lhe integralin 12, 40b)'converges in
mean, with index p', the reciproeal relation 12.4(2) wa}@stuhlished only
in the sense of the second formula 12.4(7). Thisrevult was completed
by Hille and Tamarkin [3), who m@@gnnmwamﬁmz.uz)
converges in mean, with index p, fo f{x)> This theorem is sug-
gested by Theorem 7.3(i), if we oh‘sé.i'}e that the function F(y)
is an analogue of a sequence of Fourier coeflicients, and the part-
ial integrais of the integral 12 4(2)'play the réle of the partial sums of
a Fourier series. The proof is, hased on Lhe tollowing lemma:

If feli(— oo, 00), r =X\ the function
) gw=-= j}ﬁ%dm ~tim L/ flretifix)

£33

T W — w5 {
exists for almost every x and satisfies an Inequalit 'y W[e] - AWf),
where A, depeAds on r only ),

Sim;e{\iﬁ view of Hilder’s inequality, the function f(f) (#--x)
is integeable in the neighbourhood of f =+ =~ the first part of
the Jemma follows frem Theorem 7.1(i). To prove the second part,

R, 1 r x—t . .
\v)sa put gu{x)= mg—w——_r_[ Fityetg on dt and consider the difference
Br == g (x) — g.{x). Then

n
1 21 x—r]
= H 1 1+ dt+
o 2#;:_[,,}(()[.\:—: d 2n

Y M. Riesz [4].
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1T S, 1 FEO (
L AP TR N AL RV R,
+11:._'.[.x-t +1:,;},!,-x—-t ot B of

The expressions o, fa, and 7, tend to 0 as 2> oo Y; hence 3, 0,
g+(x) -~ g (x}, and an application of Fatow’s lemma to the inequality
W[ gn; — wn, wn] < AW — wny wa] < ANS) (§ 7.21) shews that
Wolg; — w, w] << A WS) for every @ >0, i. e Mgl <0 AWM},
This completes the proof of the lemma.

If F(v) is piven by 12.4(8), and w>>0 is any finite number;\th\en

f Fuls) e dy =~ f i “’iftffl ahy’
Since Fu,(y) tends in mean, with index f/, to F(}), we may pul
w=co in the last equation, and we obtain
\,/
. Sin® (x —
é?Jw.d@@@g;ﬁwﬁg‘fﬁ dy=— i o@D
Applying the lemma and using ihe same deviee as in § 7.8,
we abtain that the lefi-hand side D(xY of (2), satisfies the inequality
M Pe] < 2A,M,[f]. To show, that W,[Py ~ f14 0 a8 w- oo, We
put f=f"+f", and, corresggmdmgly, Dy = @, 4- DY, where f’ €S
(§ 12.4) and MLf") < s then

WS~ Bl < D~ PPV 14 D O] W~ Bl D5
and it is anflcient\{b show that D[ — &)+ 0. We may restrict
outselves to the{Case when the function f’, which we shall now
denote by f@gmn, ia the characteristic function of an interval

{a, b). Thg}{k F (yy=i(e~¥ — ¢=%9)[y/3zy, and the second meap-
value theetem shows that

N 1197 sim vy tb—x)w siny _ ’
N\ ®w(x)=—{ f —~—=dy + [ : dy] -10( )
AN =L y ¥y | x|
<\:f°1' ‘x- large.Since W, {Pu—f; ~A, A] tends to 0 for any fixed 4, and
MADy—f; = o0, = A) + Wby — f; A, 20] is small for A4 large, it
is eayy 1o see that M,[Pu—f] - 0, and the theorem is established ).

') Sloem "Vu—elga, </ C<l= for |4, <%, =, wo obtain that, for lixed
&, #pd n large esough, (=, [ SCMf; —=n, majf2en < CWM,[ F12rR)-2r 0.

*} Heneco any function felP{— o, o), t < p< %2 is the trapsiorm of &
function g ¢ L (= , =],
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10.5. Miscellaneous theorems and osxamples.

1 -
1. If f(x)el®{—= =), the Integral ?;i{{x)c""b 2 sammEble

{€,1) for almout every ¥. Plancherei |2
{Observe that f(x) is the transtorm of & tunetlon of the class 1) (~ = =3
N\

2, If fix)e L?(— oo, =), then — ff(x) c""‘dx-o(f log =}, oy .l-m
evary . V/

[Use the mathod of § 10,32]. "'\j\\ v
3 I flx)e L9 (— oo, =), g7 2, the function ,s,'}‘\"/
bl '-.lxy_l ¢ ":'..\
-}-/—‘_— -_if (x) _ l_— dx \'\"\:\\'

may be almost everywhere non-diffarentiable,

TLet {cx }be g sequence of real pumbare lMﬂm@lm{aIVS E'E_{ m
put flxy=na, for 274 < ix| 2" 2 L,\ and Sl w0 otnwhtn.
and apply Theoram 577, For a similes mlult wo Titchmareh (8)

‘,o

4. Ehow that Mellin's mverslon’i@rmulaa

= ‘j‘ 3 ¢

s 1
F@) = [ g iR, =g [ slvx s,
B .
way, with sunitable couditi‘o@} be dedaced from the formulae 12.4{1) and YZ4TL
¢\J
LA
F 4 N T
g 3 *
t",:n'
PN\
.\;“,’
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ALMOST PERIODIC FUNCTIONS
by A. S. Besicovitch

This important summary by a well-known mathematician covers the
theory of almost periodic functions created by Harold Bohr. It
examines Bohr's own work, as well as newer, shorter, and more
elementary proofs than Bohr's, and also demonstrates extensions of
the thecry beyond the class of uniformly confinuous functions Je
which Bohr's work was limited. The contributions of Wiener, Weyl,
de la Vallée Poussin, Stepanoff, and Bochner are examined, :&hﬂe
the aufhor's own work on the piecewise continuous case”is also
included. ' A3

The first portien of this book establishes basic.“rkﬁsrems of uni-
formly 2.p. functions, including Bohr's original\Wwork, and de la
Vallée Poussin’s ingenious short proof bas@gj@hﬁaolhhaianj/.&@r;a of
purely meriodic functions. It considers qu\'sh"ma'r'rers as summation
of Fourier series of u.a.p. functions by, partial sums, the Bochner-
Fejer summation of v.a.p. function;,,jqar’ﬁcular cases of Fourier series,
and v.a.p. functions of two variables.

The second portion of this wiork covers generalizations and exten-
sions of the original thégry, discussing relaxation of continuity
restrictions, auxiliary jhebrems and formulae, the Parseva! equation
and ihe Riesc—Fischer\{\heorem, and similar matters. The third chapter
discusses analyticlalp. functions, including results in the location of
singularities, bélavior at infinity, and convergence of series. it
opens 3 wayyrfo study a wide class of trigonometric series of the
generaI{S{pe’and of exponential series {Dirichlet series).
<

"For whdse interested in the concrete and ca!cuIaﬂonaI. aspects of
thédry,” APPLIED MECHANICS REVIEW. “A clear, concise, reason-
Nably self-contained freatment of theory fundamentals,” DESIGN
NEWS,

Bibliography, xiii - 180pp. 5% x 8.
graphy. xiii -~ PR $18 Paperbound $1.75



THEORY OF GROUPS OF FINITE ORDER
by W. Burnside

For some forty years this book has been the classic introduction to
group theory. Written by the Professor of Mathematics at Royal
Naval Academy, it is both a great historical contribution andsthe
basic reference book in its area. It is the book most often réfearred
to, in later work, for detailed exposition of basic ma]‘effa!.'\'\

The first portion of this book deals with the notion qf(é‘u'}bsﬂtuiions,
while later chapters deal with group properties, isghidrphisms, and
graphical representation. Six new chapters ha¥e)been sdded to
this second revised edition on linear subs‘ri‘ruT'ers and the properties
of abﬁﬁﬁﬁ,cﬂlﬁ‘EUtharyorg.in ."..\ ’ i

“Important,” ENCYCLOPAEDIA BRITANN}C}C\. "More easily compre-
hensible than most other books on,;ifle subject,” INTERNATIONAL
MATHEMATICAL NEWS. “A classi,c”f.wérk, extraordinarily rich,” ELE-
MENTE DER MATHEMATIK 0N

PARTIAL CONTENTS. Pernuffations, groups. Properties of group in-
dependent of its mode’icﬁ\represenration. Composition series. Iso-
morphism of a groupwith itself. Abelian groups. Groups whose
orders are powers of,primes. Sylow’s theorem. Permutation groups:
transitive, intrapéftive, primitive, unprimitive, Representation of
a group of ﬁn(re order as a permutation group. Groups of linear
substitutiongiygroup of finite order represented as group of linear
substi’ruﬂz%." Group-characteristics. Applications of theory of groups
of lingan substitutions and group-characteristics. Invariants. Graphi-
cals:r.épresemations. Cayley’s colour-groups. Congruence groups.
Also, 44 pages of appendixes.

Unabridged republication of 2nd 1911 edition. Two prefaces. Index.
18 illustrations. 100 examples. xxiv - 512pp. 5% x 8.
Paperbound $2.45



LECTURES ON THE ICQSAHEDRON AND THE SOLUTION OF EQUA-
TIONS OF THE FIFTH DEGREE by Felix Klein

This well-known monograph covers the solution of quintics in terms
ot the rotations of regular icosahedron around the axes of its sym-
metry. Still the only work unifying all previous knowledge on
guintics, it is both an outstanding classic of mathematics and an
indispensable source book for those interested in higher algebrs,
geometry, or the mathematics of crystallography. An expert kno@:
edge of higher mathematics is not required to follow the presehfa-

tion, since considerable explanatory material is included. ¢\J)
NS “

Partial contents: THEORY OF THE ICOSAHEDRON !TSELF. Regular
solids and theory of groups. Introduction of (x 4 iy}?Stafement and
discussion of the fundamental probiem according}#c\) the theory of
furictions. On the algebraic character of our fdntamental problem.
General theorems and survey of the subject, THEORY OF EQUATIONS
OF THE FIFTH DEGREE. Historical deVelBperaIdiransofitellty of
equations of the fifth degree. Introdygtign of geometrical material,
The canonical equations of the fifth degree. The problem of the A's
and the Jacobian equations of theldth degree. The general equation

*

of the fifth degree.
First edition in over 40 yga’r's:bf this outstanding classic which has
brought up fo $25 on thé\out of prinf market. 230 footnotes, mostly
bibliagraphic. Second (revised edition, with additional corrections.

xvi L 289pp. 5% X8
t i Paperbound, $1.85



VECTOR AND TENSOR ANALYSIS
by G. E. Hay

First published in 1953, this is a simple clear introduction to
classical vector and tensor analysis for students of enginsering and
mathematical physics. it is unusual for its appreciation of the prob-
lems which beset the beginning student, and iis capable resoiuthn
of these problems.

Emphasis is upon vectors, with chapters discussing elemen}a\'r&?*u}ector
operations, up to moments of vectors, linear vector, differential
equations; applications to plane, solid analytic afd\differential
geometry; mechanics, with special reference to mefidh of a particle
and of a system of particles; partial differentisfion, with cperator
del and other operators; integration, with Greeh's thesrern, Stokes's
theory, Juotatinnglians, saignaidal vectors,{Most important features
of classical tensor analysis are also preseﬁ\red, with infermation on
transformation of coordinates, contradapiant and covariant tensors,
metric tensors, conjugate tensonjs;:'.geodesics, orierited Cartesian
tensors, Christoffel symbols, an#Sapplications.

Many examples are worked the text, while more than 200 prob-
lems are presented at I}lg’\‘ends of chapters.

"Remarkably compr ﬁéﬁéive, concise, and clear,” INDUSTRIAL
LABORATORIES. “A\useful addition to the library on the subject,”
ELECTRONICS. (“Corisidered as a condensed fext in the classical
manner, the"k{cu:ik can well be recommended,” NATURE (London).

66 ﬂgure{\:"v\n‘i’ + 193pp. 5% x 8. 8109 Paperbound $1.75

N,

‘.\’:.

PN

O



THEORY OF SETS
by E. Kamke

This is the clearest and simplest introduction to the theory of sets.
Making use of the discoveries of such mathematicians as Cantor,
Russell, Weierstrass, Zermelo, Bernstein, Dedekind, and others, it
analyzes the concepts and principles of set theory. Although em-
phasis is on fundamentals, special subdivisions, such as the the&'y
of sets of points, are considered. The text is accompanied, by\ innu-
_merable examples. Presentation is simple, easily comprehgnsible to
8 reader who has some acquaintance with college algebta.

"Exceptionally well written,” SCHOOL SCIENCE,AI;ID MATHEMA.
TICS. A very fine book,” MATHEMATICS TEACHER.' “Of real service
ta logicians and philosophers who have hithérte*had ne access to a

concise and accurate introduction m&hgb@ﬂggpérmhof sets,”
PHILOSOPHICAL REVIEW. \

PARTIAL CONTENTS. |. RUDIMENTS ‘QF SET THEORY. First classifica-
tions, subsets, sums, infersection? 6f sets, nonenumerable sets, efc.
[l. ARBITRARY SETS AND THEIR CARDINAL NUMBERS. Exfensions
of number concept; equwa‘lence of sets; cardinal numbers; Bern-
stein’s theorem; sums, groducts of two, many cardinal numbers;
powers, etc. Il ORI;J‘EQED SETS AND THEIR ORDER TYPES. Defini-
tion; similarity; or&gx’Type; sum, product of order types; powers,
dense sels, continipus sets, ete. V. WELL-ORDERED SETS AND THEIR
ORDINAL NUMBERS. Definition of well-ordering, ordinal numbers;
addition, {n{{l.ﬁpiication of ordinal numbers; subsets, similarity map-
pings; comiparison of ordinal numbers, sequences or ordinals, op-
eratign}'\}virh ordinals; transfinite induction; products, powers of
Ordj'r'fal numbers; well-ordering theorem; well-ordering of cardinal
mrj(ﬁn'bers, ordinal numbers and sets of points, and similar fopics.

Translated from the second edition by Frederick Bagemihl. Bibliog-

raphy. Key fo symbols used. Index. vii 4 144pp. 5% x 8.
S141 Paperbound $1.35



INFINITE SEQUENCES AND SERIES
by Konrad Knopp

One of the best expositors in the field of modern mathematics, Dr.
Konrad Knopp here concentrates upon two topics that are of par.
ticular interest to 20th century mathematicians. He develops the!
theory of infinite sequences and series from its beginnings fo a
point where the reader will be in a suitable position fo invesilgate
more advanced stages on his own initiative, The foundatigq§~of the-
theory are therefore presented with especial care, wh»le dévelop-
mental aspects are limited fo the scoepe and purpose afy The book.

All definitions are clearly stated; all iheorems'are proved with]
enough defaill fo make them readily comprehéhsiBle. In Chapter 1,1
the author begins with the construction of the'system of real and
complex’ wiyrdberslilumdy pradeeds  through’ysuch fundamental con-|
cepts as sets of numbers, and functiofis,of real and complex vari-
ables. In his treatment of Sequerjceg ‘and Series (Chapter 2), he:
covers arbitrary and null sequentes: sequences and sets of num-.
bers; convergence, divergence;jﬁiéuchy’s limit theorem; main tests
for sequences; and infinite a}af}oies. Chapter 3 deals with main tes?s,
for infinite series, and oferating with convergent series. Chapters
4 and 5 explain powgr\series and the development of the theory |
of convergence, respec’rlvely Chapter 6 treats expansion of the !
elementary functidgs; and Chapter 7 concludes with numerical and
closed eva1uat1Qn ‘of series.

Trans1a1ed\'By Frederick Bagemihl, Bibliography. Index. 186pp.

4 x. ~8§ J
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